
Since the CTF is still active I wont be dropping the flags. You can follow along and complete the

challenges for yourself here: https://ctfx.hacktm.ro/

A basic PCAP forensics question. When you get the file, you will find that there are many USB
Massive Storage packages. The initial guess is to find the flag in it.

HackTM CTF 2020 Writeup

0x01 Strange PCAP

https://ctfx.hacktm.ro/
https://hideandsec.sh/uploads/images/gallery/2020-10/n2sLl24sdy0hmqRL-image-1601741894500.png
https://hideandsec.sh/uploads/images/gallery/2020-10/ljCgzlC4vHBbToDA-image-1601742015495.png

Looking through the data packets one by one, I found the ZIP file header and Flag.txt in Frame
1224, extract them and have a look.

After extracting the data, it is found to be an encrypted compressed package. Check it with 010
Editor and find that it is really encrypted. Next, we have to find the password. Let's make a
preliminary guess about the HID package sent by the keyboard because we have seen the USB
HID data package before Types of.

https://hideandsec.sh/uploads/images/gallery/2020-10/PGQpjxY9VNCshqlY-image-1601742075052.png
https://hideandsec.sh/uploads/images/gallery/2020-10/5jwyOJRvTRyCgD7N-image-1601742136284.png

Scrolling down, I saw a lot of URB_INTERRUPT types. We exported these data packets with tshark.

For the detailed process, please refer to the second level of the 2020 New Year Red Packet Writeup

 of Milk Ice . I will not repeat it here.

Refer to the USB Keyboard data packet format , you can know that the first Byte of each packet

corresponds to the state of the control key, and the third Byte corresponds to the input key.

Combined with the USB HID Keyboard scan codes, the following script can be constructed to

analyze the data packet.

usb_codes = {

	0x04:"aA", 0x05:"bB", 0x06:"cC", 0x07:"dD", 0x08:"eE", 0x09:"fF",

	0x0A:"gG", 0x0B:"hH", 0x0C:"iI", 0x0D:"jJ", 0x0E:"kK", 0x0F:"lL",

	0x10:"mM", 0x11:"nN", 0x12:"oO", 0x13:"pP", 0x14:"qQ", 0x15:"rR",

	0x16:"sS", 0x17:"tT", 0x18:"uU", 0x19:"vV", 0x1A:"wW", 0x1B:"xX",

	0x1C:"yY", 0x1D:"zZ", 0x1E:"1!", 0x1F:"2@", 0x20:"3#", 0x21:"4$",

	0x22:"5%", 0x23:"6^", 0x24:"7&", 0x25:"8*", 0x26:"9(", 0x27:"0)",

	0x2C:" ", 0x2D:"-_", 0x2E:"=+", 0x2F:"[{", 0x30:"]}", 0x32:"#~",

	0x33:";:", 0x34:"'\"", 0x36:",<", 0x37:".>"

}

data = ''

for x in open("xd","r").readlines():

https://hideandsec.sh/uploads/images/gallery/2020-10/3evhvMeaT5eJ91i1-image-1601742566015.png
https://blog.berd.moe/archives/milkice-2020-redpacket-writeup/
https://blog.berd.moe/archives/milkice-2020-redpacket-writeup/
https://blog.berd.moe/archives/milkice-2020-redpacket-writeup/
https://wiki.osdev.org/USB_Human_Interface_Devices
https://gist.github.com/MightyPork/6da26e382a7ad91b5496ee55fdc73db2

After parsing, the compressed package password is obtained and completed.

I got the title and found that there are three imgs, two of which are the same size, and the other is
0.

According to the meaning of the title "One of my drives failed", it is guessed that the file with a
size of 0 is the damaged disk. According to the two disks can "recovering all my files", it may be a

	code = int(x[4:6],16)

	print(x[4:6])

	if code == 0:

		continue

	if code == 0x28:

		print('ENTER!')

		print(data)

		data = ''

		continue

	upper = 0

	if int(x[0:2],16) == 0x02 or int(x[0:2],16) == 0x20:

		upper = 1

	data += usb_codes[code][upper]

print(data)

0x02 RR

https://hideandsec.sh/uploads/images/gallery/2020-10/5Lq6mhGc6YZirobb-image-1601742747983.png
https://hideandsec.sh/uploads/images/gallery/2020-10/y5wxkH8aKFGODbbt-image-1601742870696.png

RAID array

But there is a hole in this question. The beginning of the img file is filled with an invalid partition
table. Using the file command or directly checking with mdadm will not be recognized as a RAID
disk. Check with binwalk to find the correct offset.

Here, use dd to simply crop this file, and then use mdadm to view the detailed RAID information, it
is indeed a RAID5. Next, create a loop and then do with losetup mdadm --assemble --run /dev/md0

--readonly /dev/loop0 /dev/loop1 directly mount the hard drive on it. Here you go losetup -o
rather use the dd process the file because encountered some mysterious Bug.

https://hideandsec.sh/uploads/images/gallery/2020-10/0qMPj5Q1uDsKGs1V-image-1601749270654.png
https://hideandsec.sh/uploads/images/gallery/2020-10/tcLchN0AlSFuE9ri-image-1601749587835.png

